We demonstrate few-cycle pulse generation based on double-stage all-fiber nonlinear pulse compression from a thulium-doped fiber laser at a repetition rate of ∼199.74 MHz. The homemade laser provides an average power of 130 mW, serving as the seed for subsequent amplification. After amplification, significant spectral broadening to an octave-spanning bandwidth (1.2 to 2.4 μm) is attained through self-phase modulation-dominated nonlinear effects in an ultrahigh numerical aperture fiber and a highly nonlinear fiber. Followed by a two-stage nonlinear compressor, the system directly delivers near transform-limited pulses with a pulse duration of 19.8 fs (2.9 cycles at a central wavelength of 2000 nm) and a pulse energy of 3.37 nJ. To the best of our knowledge, this result is the shortest pulse duration directly generated from a thulium-doped fiber laser. This robust and simplified all-fiber system provides a promising route toward practical mid-infrared frequency comb generation and mid-infrared spectroscopy.