Recently, the 5th International Symposium on High Power Laser Science and Engineering (HPLSE 2023), to be held on October 16-19, 2023 in Suzhou, China, announced its six plenary speakers.
The image shows fast object detection and data analysis of high-power high-repetition-rate laserplasma experiment using neural networks. In the petawatt, Hz laser system at the Center for Advanced Laser Applications, Munich, object detection networks are used to rapidly process and visualize various diagnostic data from each frame of the laser’s output images, including electron energy spectra, plasma wave, and laser damage.
Helical laser beams, due to their unique ?eld structure, are ideal optical drivers for producing monoenergetic, pellet-like electron bunches. In contrast to regular laser beams, their ?eld structure close to the axis of the beam is dominated by longitudinal electric and magnetic ?elds. The bunches are generated as a result of two synergetic e?ects that take place when such a beam is re?ected o? a mirror: the longitudinal electric ?eld accelerates electrons after extracting them from the mirror surface; while the magnetic ?eld con?nes them into the central region, allowing for acceleration within the laser over a long duration.
The cover image illustrates the photonic quasicrystal fiber (PQF), which is also named quasiperiodic photonic crystal fiber. The five insets surrounding the PQF end-face provide a simultaneous display of three typical structures and two representative potential applications of PQF. The three white-circled insets (top-left, right, and bottom-left) represent the Stampfli-type, Penrose-type, and Sunflower-type structures, respectively. The two blue-circled insets (left and bottom-right) show applications of the supercontinuum generation and orbital angular momentum mode propagation, respectively.