Advanced Photonics
Xiaocong Yuan,Anatoly Zayats
Luca Pezzè

The article comments on a recent advance in optical quantum metrology.

Advanced Photonics
Mar. 21, 2023
  • Vol. 5 Issue 2 020501 (2023)
  • Jin Yao, Rong Lin, Mu Ku Chen, and Din Ping Tsai

    Integrated-resonant units (IRUs), associating various meta-atoms, resonant modes, and functionalities into one supercell, have been promising candidates for tailoring composite and multifunctional electromagnetic responses with additional degrees of freedom. Integrated-resonant metadevices can overcome many bottlenecks in conventional optical devices, such as broadband achromatism, efficiency enhancement, response selectivity, and continuous tunability, offering great potential for performant and versatile application scenarios. We focus on the recent progress of integrated-resonant metadevices. Starting from the design principle of IRUs, a variety of IRU-based characteristics and subsequent practical applications, including achromatic imaging, light-field sensing, polarization detection, orbital angular momentum generation, metaholography, nanoprinting, color routing, and nonlinear generation, are introduced. Existing challenges in this field and opinions on future research directions are also provided.

    Advanced Photonics
    Feb. 22, 2023
  • Vol. 5 Issue 2 024001 (2023)
  • Mingxue Deng, Xingzhong Cao, Yangmin Tang, Zhenzhen Zhou, Lijia Liu, Xiaofeng Liu, Peng Zhang, Lo-Yueh Chang, Hao Ruan, Xinjun Guo, Jiacheng Wang, and Qian Liu

    Luminescent materials often suffer from thermal quenching (TQ), limiting the continuation of their applications under high temperatures up to 473 K. The formation of defect levels could suppress TQ, but rational synthesis and deep understanding of multiple defects-regulated luminescent materials working in such a wide temperature range still remain challenging. Here, we prepare a negative thermal quenching (NTQ) phosphor LiTaO3 : Tb3 + by introducing gradient defects VTa5-, TbLi2+, and ( VTaTbLi)3 - as identified by advanced experimental and theoretical studies. Its photoluminescence significantly becomes intense with rising temperatures and then slowly increases at 373 to 473 K. The mechanism studies reveal that gradient defects with varied trapping depths could act as energy buffer layers to effectively capture the carriers. Under thermal disturbance, the stored carriers could successively migrate to the activators in consecutive and wide temperature zones, compensating for TQ to enhance luminescence emission. This study initiates the synthesis of multi-defect NTQ phosphors for temperature-dependent applications.

    Advanced Photonics
    Feb. 14, 2023
  • Vol. 5 Issue 2 026001 (2023)
  • Wenhe Jia, Chenxin Gao, Yongmin Zhao, Liu Li, Shun Wen, Shuai Wang, Chengying Bao, Chunping Jiang, Changxi Yang, and Yuanmu Yang

    Optical metasurfaces are endowed with unparallel flexibility to manipulate the light field with a subwavelength spatial resolution. Coupling metasurfaces to materials with strong optical nonlinearity may allow ultrafast spatiotemporal light field modulation. However, most metasurfaces demonstrated thus far are linear devices. Here, we experimentally demonstrate simultaneous spatiotemporal laser mode control using a single-layer plasmonic metasurface strongly coupled to an epsilon-near-zero (ENZ) material within a fiber laser cavity. While the geometric phase of the metasurface is utilized to convert the laser’s transverse mode from a Gaussian beam to a vortex beam carrying orbital angular momentum, the giant nonlinear saturable absorption of the ENZ material enables pulsed laser generation via the Q-switching process. The direct integration of a spatiotemporal metasurface in a laser cavity may pave the way for the development of miniaturized laser sources with tailored spatial and temporal profiles, which can be useful for numerous applications, such as superresolution imaging, high-density optical storage, and three-dimensional laser lithography.

    Advanced Photonics
    Feb. 22, 2023
  • Vol. 5 Issue 2 026002 (2023)
  • Yilin He, Yunhua Yao, Dalong Qi, Yu He, Zhengqi Huang, Pengpeng Ding, Chengzhi Jin, Chonglei Zhang, Lianzhong Deng, Kebin Shi, Zhenrong Sun, Xiaocong Yuan, and Shian Zhang

    Various super-resolution microscopy techniques have been presented to explore fine structures of biological specimens. However, the super-resolution capability is often achieved at the expense of reducing imaging speed by either point scanning or multiframe computation. The contradiction between spatial resolution and imaging speed seriously hampers the observation of high-speed dynamics of fine structures. To overcome this contradiction, here we propose and demonstrate a temporal compressive super-resolution microscopy (TCSRM) technique. This technique is to merge an enhanced temporal compressive microscopy and a deep-learning-based super-resolution image reconstruction, where the enhanced temporal compressive microscopy is utilized to improve the imaging speed, and the deep-learning-based super-resolution image reconstruction is used to realize the resolution enhancement. The high-speed super-resolution imaging ability of TCSRM with a frame rate of 1200 frames per second (fps) and spatial resolution of 100 nm is experimentally demonstrated by capturing the flowing fluorescent beads in microfluidic chip. Given the outstanding imaging performance with high-speed super-resolution, TCSRM provides a desired tool for the studies of high-speed dynamical behaviors in fine structures, especially in the biomedical field.

    Advanced Photonics
    Mar. 09, 2023
  • Vol. 5 Issue 2 026003 (2023)
  • Please enter the answer below before you can view the full text.