
The betatron radiation source features a micrometer-scale source size, a femtosecond-scale pulse duration, milliradian-level divergence angles and a broad spectrum exceeding tens of keV. It is conducive to the high-contrast imaging of minute structures and for investigating interdisciplinary ultrafast processes. In this study, we present a betatron X-ray source derived from a high-charge, high-energy electron beam through a laser wakefield accelerator driven by the 1 PW/0.1 Hz laser system at the Shanghai Superintense Ultrafast Laser Facility (SULF). The critical energy of the betatron X-ray source is 22 ± 5 keV. The maximum X-ray flux reaches up to 4 × 109 photons for each shot in the spectral range of 5–30 keV. Correspondingly, the experiment demonstrates a peak brightness of 1.0 × 1023 photons·s-1·mm-2·mrad-2·0.1%BW-1, comparable to those demonstrated by third-generation synchrotron light sources. In addition, the imaging capability of the betatron X-ray source is validated. This study lays the foundation for future imaging applications.
A concept for a femtosecond pulse compressor based on underdense plasma prisms is presented. An analytical model is developed to calculate the spectral phase incurred and the expected pulse compression. A 2D particle-in-cell simulation verifies the analytical model. Simulated intensities ( ${\sim} {10}^{16}$ W/cm2) were orders of magnitude higher than the damage threshold for conventional gratings used in chirped pulse amplification. Theoretical geometries for compact (tens of cm scale) compressors for 1, 10 and 100 PW power levels are proposed.
The Mamyshev oscillator (MO) is well-known for its high modulation depth, which provides an excellent platform for achieving both high average power and short pulse durations. However, this characteristic typically limits the high-repetition-rate pulse generation. Herein, we construct an MO that achieves a gigahertz (GHz) repetition rate through harmonic mode-locking. The laser can reach up to the 93rd order, which corresponds to the repetition rate of 1.6 GHz. The maximum achieved output average power is 3 W at a repetition rate of 1.2 GHz (69th order), with the corresponding pulse duration compressed to 51 fs. To our knowledge, this is the first time that the GHz repetition rate in an MO has been obtained simultaneously with the recorded average power and pulse duration.
The transport process of a relativistic electron beam (REB) in high-density and degenerate plasmas holds significant importance for fast ignition. In this study, we have formulated a comprehensive theoretical model to address this issue, incorporating quantum degeneracy, charged particle collisions and the effects of electromagnetic (EB) fields. We model the fuel as a uniform density region and particularly focus on the effect of quantum degeneracy during the transport of the REB, which leads to the rapid growth of a self-generated EB field and a subsequently significant self-organized pinching of the REB. Through our newly developed hybrid particle-in-cell simulations, we have observed a two-fold enhancement of the heating efficiency of the REB compared with previous intuitive expectation. This finding provides a promising theoretical framework for exploring the degeneracy effect and the enhanced self-generated EB field in the dense plasma for fast ignition, and is also linked to a wide array of ultra-intense laser-based applications.
High-power lasers are vital for particle acceleration, imaging, fusion and materials processing, requiring precise control and high-energy delivery. Laser plasma accelerators (LPAs) demand laser positional stability at focus to ensure consistent electron beams in applications such as X-ray free-electron lasers and high-energy colliders. Achieving this stability is especially challenging for the low-repetition-rate lasers in current LPAs. We present a machine learning method that predicts and corrects laser pointing instabilities in real-time using a high-frequency pilot beam. By preemptively adjusting a correction mirror, this approach overcomes traditional feedback limits. Demonstrated on the BELLA petawatt laser operating at the terawatt level (30 mJ amplification), our method achieved root mean square pointing stabilization of 0.34 and 0.59 $\unicode{x3bc} \mathrm{rad}$ in the x and y directions, reducing jitter by 65% and 47%, respectively. This is the first successful application of predictive control for shot-to-shot stabilization in low-repetition-rate laser systems, paving the way for full-energy petawatt lasers and transformative advances across science, industry and security.
This paper introduces a novel ray-tracing methodology for various gradient-index materials, particularly plasmas. The proposed approach utilizes adaptive-step Runge–Kutta integration to compute ray trajectories while incorporating an innovative rasterization step for ray energy deposition. By removing the requirement for rays to terminate at cell interfaces – a limitation inherent in earlier cell-confined approaches – the numerical formulation of ray motion becomes independent of specific domain geometries. This facilitates a unified and concise tracing method compatible with all commonly used curvilinear coordinate systems in laser–plasma simulations, which were previously unsupported or prohibitively complex under cell-confined frameworks. Numerical experiments demonstrate the algorithm’s stability and versatility in capturing diverse ray physics across reduced-dimensional planar, cylindrical and spherical coordinate systems. We anticipate that the rasterization-based approach will pave the way for the development of a generalized ray-tracing toolkit applicable to a broad range of fluid simulations and synthetic optical diagnostics.
High-power laser systems require thin films with extremely low absorption. Ultra-low-absorption films are often fabricated via ion beam sputtering, which is costly and slow. This study analyzes the impact of doping titanium and annealing on the absorption characteristics of thin films, focusing on composition and structure. The results indicate that the primary factor influencing absorption is composition. Suppressing the presence of electrons or holes that do not form stable chemical bonds can significantly reduce absorption; for amorphous thin films, the structural influence on absorption is relatively minor. Thus, composition control is crucial for fabricating ultra-low-absorption films, while the deposition method is secondary. Ion beam-assisted electron-beam evaporation, which is relatively seldom used for fabricating low-absorption films, was employed to produce high-reflectivity films. After annealing, the absorption at 1064 nm reached 1.70 parts per million. This method offers a cost-effective and rapid approach for fabricating ultra-low-absorption films.