
The nanorod structure is an alternative scheme to develop high-efficiency deep ultraviolet light-emitting diodes (DUV LEDs). In this paper, we first report the electrically injected 274-nm AlGaN nanorod array DUV LEDs fabricated b
An out-of-plane silicon grating coupler capable of mode-order conversion at the chip–fiber interface is designed and fabricated. Optimization of the structure is performed through finite-difference time-domain simulations, and the
We propose a method to generate specially shaped high-order singular beams of pre-designed intensity distributions. Such a method does not a priori assume a phase formula, but rather relies on the “cake-cutting and assembly” appro
We report a dual-contrast method of simultaneously measuring and visualizing the volumetric structural information in live biological samples in three-dimensional (3D) space. By introducing a direct way of deriving the 3D scatteri
Due to its strong piezoelectric effect and photo-elastic property, lithium niobate is widely used for acousto-optical applications. However, conventional bulk lithium niobate waveguide devices exhibit a large footprint and limited
Optical signal-to-noise ratio (OSNR) is one of the most significant parameters for the performance characterization of random fiber lasers (RFLs) and their application potentiality in sensing and telecommunication. An effective wa
We investigated the nonlinear optical properties of ReSe2. First, we measured the nonlinear absorption coefficient and the nonlinear refractive index of a ReSe2 thin film using open-aperture (OA) and closed-aperture (CA) Z-scan te
We report an all-fiberized 30-W supercontinuum (SC) generation in a piece of ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fiber. The pump source is a thulium-doped fiber amplifier (TDFA) with broadband output spectrum spanning the 1.9 to ~2.6
Efficient, scalable, bufferless, and compact III–V lasers directly grown on (001)-oriented silicon-on-insulators (SOIs) are preferred light sources in Si-photonics. In this article, we present the design and operation of III–V tel
Ultra-high-pulse-repetition-rate lasers are essential for a number of applications, including, e.g., optical communication and ablation-cooled material processing. Despite several techniques to generate pulses with gigahertz-range
We report the first (to the best of our knowledge) tunable passively Q-switched Er3+-doped ZrF4 fiber laser around 3.5 μm. In this case, a Fe2+:ZnSe crystal is used as the saturable absorber, and a plane-ruled grating in a Littrow
A compact single-shot complementary metal-oxide semiconductor (CMOS) spectral sensor for the visible range (wavelength 400–700 nm) is presented. The sensor consists of two-dimensional silicon nitride-based photonic crystal (PC) sl
The spin Hall effect of light (SHEL) is a photonic version of the spin Hall effect in electronic systems and has been studied for more than 10 years. However, the lack of effective methods for dynamic modulation of spin-dependent
We demonstrate both experimentally and theoretically the trapping and guiding of a weak signal pulse via a self-accelerating Airy pulse. This is achieved by launching the Airy pulse in the anomalous dispersion regime of an optical
Polarization imaging finds applications in many areas, such as photoelasticity, ellipsometry, and biomedical imaging. A compact, snapshot, and high-efficiency imaging polarimeter is highly desirable for many applications. Here, ba
We present an accurate, easy-to-use large-signal SPICE circuit model for depletion-type silicon ring modulators (Si RMs). Our model includes both the electrical and optical characteristics of the Si RM and consists of circuit elem
Based on a silicon platform, we design and fabricate a four-mode division (de)multiplexer for chip-scale optical data transmission in the 2 μm waveband for the first time, to the best of our knowledge. The (de)multiplexer is compo
Flat optics presents a new path to control the phase, amplitude, and polarization state of light with ultracompact devices. Here we demonstrate chip-integrated metasurface devices for polarization detection of mid-infrared light w
Visible light communication based on light-emitting diodes (LEDs) has become a promising candidate by providing high data rates, low latency, and secure communication for underwater environments. In this paper, a self-designed com
The active control of electromagnetic response in metamaterial and mutual coupling between resonant building blocks is of fundamental importance in realizing high-quality metamaterials. In this work, we propose and experimentally
Ultra-high quality (Q) whispering gallery mode (WGM) microtoroid optical resonators have demonstrated highly sensitive biomolecular detection down to the single molecule limit; however, the lack of a robust coupling method has pre
Active control of metamaterial properties with high tunability of both resonant intensity and frequency is essential for advanced terahertz (THz) applications, ranging from spectroscopy and sensing to communications. Among varied
We design and present a switchable slow light rainbow trapping (SLRT) state in a strongly coupling topological photonic system made from a magneto-optical photonic crystal waveguide channel. The waveguide channel supports slow lig