
Special issue on two-dimensional layered materials for ultrafast lasers.
Searching for an ultrahigh-repetition-rate pulse on the order of hundreds of gigahertz (GHz) is still a challenging task in the ultrafast laser community. Recently, high-quality silicon/silica-based resonators were exploited to ge
Transition metal dichalcogenides (TMDs) are successfully applied in fiber lasers for their photoelectric properties. However, in previous work, how to improve the modulation depth of TMD-based saturable absorbers (SAs) has been a
In this paper, we review our recent work on thermo-optic all-optical devices based on two-dimensional (2D) materials. The unique properties of 2D materials enable fast and highly efficient thermo-optic control of light. A few all-
Conventional Q-switched fiber lasers operating at multi-longitudinal-mode oscillation usually suffer from self-mode-locking-induced temporal instability, relatively strong noise, and low coherence. Here, we address the challenge t
We experimentally demonstrate an ultrafast mode-locker based on a CoSb3 skutterudite topological insulator for femtosecond mode-locking of a fiber laser. The mode-locker was implemented on a side-polished fiber platform by deposit
We fabricate titanium disulfide (TiS2) using a liquid exfoliation method and subsequently a TiS2-based device by optically depositing the TiS2 material onto the microfiber. This device exhibits a strong nonlinear saturable absorpt
Here, we used the micro P-scan method to investigate the saturated absorption (SA) of different layered Bi2Se3 continuous films. Through resonance excitation, first, we studied the influence of the second surface state (SS) on SA.
We introduce the background and motivation of this feature issue of two-dimensional layered materials for ultrafast lasers. A brief summary of the seven collected articles in this feature...
We experimentally demonstrate high-efficiency and broadband four-wave mixing in a silicon-graphene strip waveguide. A four-wave mixing conversion efficiency of 38.7 dB and a 3-dB conversion bandwidth of 35 nm are achieved in the s
Near infrared light-controlled release of payloads from ultraviolet-sensitive (UV-sensitive) polymer hydrogels or nanocarriers is one of the most promising strategies for biotherapy. Here, we propose the concept of light activatio
Surface channel waveguides (WGs) were fabricated in a monoclinic Tm3+:KLu(WO4)2 crystal by femtosecond direct laser writing (fs-DLW). The WGs consisted of a half-ring cladding with diameters of 50 and 60 μm located just beneath th
There has been a growing interest in disordered optical media in recent years due to their potential applications in solar collectors, random lasers, light confinement, and other advanced photonic functions. This paper studies the
Microcomb generation with simultaneous χ(2) and χ(3) nonlinearities brings new possibilities for ultrabroadband and potentially self-referenced integrated comb sources. However, the evolution of the intracavity field involving mul
Future quantum information networks operated on telecom channels require qubit transfer between different wavelengths while preserving quantum coherence and entanglement. Qubit transfer is a nonlinear optical process, but currentl
We systematically investigate the influences of the input infrared spectrum, chirp, and polarization on the emitted intense terahertz spectrum and spatial dispersion in lithium niobate via optical rectification. The terahertz yiel
We have used a gold nanohole array to trap single polystyrene nanoparticles, with a mean diameter of 30 nm, into separated hot spots located at connecting nanoslot regions. A high trap stiffness of approximately 0.85 fN/(nm·mW) at