
Pump-probe differential reflection and transmission spectroscopy is a very effective tool to study the nonequili-brium carrier dynamics of graphene. The reported sign of differential reflection from graphene is not explicitly expl
We propose and demonstrate a dual-wavelength single-longitudinal-mode (SLM) fiber laser with switchable wavelength spacing based on a graphene saturable absorber (GSA) and a WaveShaper. By virtue of the excellent saturable absorpt
Due to the manifestation of fascinating physical phenomena and materials science, two-dimensional (2D) materials have recently attracted enormous research interest with respect to the fields of electronics and optoelectronics. The
We propose and demonstrate a dual-wavelength single-longitudinal-mode (SLM) fiber laser with switchable wavelength spacing based on a graphene saturable absorber (GSA) and a WaveShaper. By virtue of the excellent saturable absorpt
A compact saturable absorber mirror (SAM) based on few-layer molybdenum disulfide (MoS2) nanoplatelets was fabricated and successfully used as an efficient saturable absorber (SA) for the passively Q-switched solid-state laser at
Few-layer molybdenum disulfide (MoS2) is emerging as a promising quasi-two-dimensional material for photonics and optoelectronics, further extending the library of suitable layered nanomaterials with exceptional optical properties
We propose a low-threshold soliton fiber laser passively mode locked with two different types of film-like saturable absorbers, one of which is fabricated by mixing Bi2Te3 with de-ionized water, as well as polyvinyl alcohol (PVA),
With MoS2 as saturable absorber, passive Q-switching and Q-switched mode-locking operations of a Tm-doped calcium lithium niobium gallium garnet (Tm:CLNGG) laser were experimentally demonstrated. The Q-switched laser emitted a max
Liquid-phase-exfoliation technology was utilized to prepare layered MoS2, WS2, and MoSe2 nanosheets in cyclohexylpyrrolidone. The nonlinear optical response of these nanosheets in dispersions was investigated by observing spatial
The paper summarizes the recent achievements in the area of ultrafast fiber lasers mode-locked with so-called lowdimensional nanomaterials: graphene, topological insulators (Bi2Te3, Bi2Se3, Sb2Te3), and transition metal sulfide se
A graphene-coated microfiber (GCM)-based hybrid waveguide structure formed by wrapping monolayer graphene around a microfiber with length of several millimeters is pumped by a nanosecond laser at ~1550 nm, and multiorder cascaded
Two-dimensional (2D) materials have emerged as attractive mediums for fabricating versatile optoelectronic devices. Recently, few-layer molybdenum disulfide (MoS2), as a shining 2D material, has been discovered to possess both the
A random distributed feedback fiber laser with linear polarized output at 1178 nm is presented. Linear polarization is realized by fiber coiling in a half-opened cavity of a polarization maintaining random fiber laser structure. T
The comparative numerical and analytical analysis of scintillation indices of the vortex Laguerre–Gaussian beam and the nonvortex doughnut hole and Gaussian beams propagating in the randomly inhomogeneous atmosphere has been perfo
Photonic crystal slabs integrated into organic light-emitting diodes (OLEDs) allow for the extraction of waveguide modes and thus an increase in OLED efficiency. We fabricated linear Bragg gratings with a 460-nm period on flexible
The angle dependence of optical phonon modes of an AlN bulk single crystal from the m-plane (1100) and c-plane (0001) surfaces, respectively, is investigated by polarized Raman spectroscopy in a backscattering configuration at roo