
The original article contained a spelling error in the first author’s name. The correct...
The strong-coupling mode, called the “quasimode”, is excited by stimulated Brillouin scattering (SBS) in high-intensity laser–plasma interactions. Also SBS of the quasimode competes with SBS of the fast mode (or slow mode) in mult
We incorporate deep learning (DL) into tiled aperture coherent beam combining (CBC) systems for the first time, to the best of our knowledge. By using a well-trained convolutional neural network DL model, which has been constructe
We present a scintillator-based detector able to measure the proton energy and the spatial distribution with a relatively simple design. It has been designed and built at the Spanish Center for Pulsed Lasers (CLPU) in Salamanca an
High-power femtosecond lasers beyond $5~\unicode[STIX]{x03BC}\text{m}$ are attractive for strong-field physics with mid-infrared (IR) fields but are difficult to scale up. In optical parametric chirped-pulse amplification (OPCPA)
We propose and demonstrate the use of random phase plates (RPPs) for high-energy sub-picosecond lasers. Contrarily to previous work related to nanosecond lasers, an RPP poses technical challenges with ultrashort-pulse lasers. Here
Direct-drive laser fusion has one potential advantage over all other approaches to fusion energy. The hot plasma can be kept near or below the various plasma instability thresholds, if one uses purely spherical targets, with a sho
We report on the study of single-mode fiber-laser-pumped mode-locked Yb:CALYO lasers via using a passive saturable absorber and Kerr-lens mode-locking technique, respectively. Up to 3.1-W average power with 103-fs pulse duration i
We report on the investigation of intermode beating mode-locked (IBML) pulse generation in a simple all-fiber Tm$^{3+}$-doped double clad fiber laser (TDFL). This IBML TDFL is implemented by matching longitudinal-mode frequency be
A number of vision-based methods for detecting laser-induced defects on optical components have been implemented to replace the time-consuming manual inspection. While deep-learning-based methods have achieved state-of-the-art per
We report on a new scheme for efficient continuous-wave (CW) mid-infrared generation using difference frequency generation (DFG) inside a periodically poled lithium niobate (PPLN)-based optical parametric oscillator (OPO). The pum