
Hadamard single-pixel imaging is an appealing imaging technique due to its features of low hardware complexity and industrial cost. To improve imaging efficiency, many studies have focused on sorting Hadamard patterns to obtain re
Aiming at coherence degradation during target detection, a suppressing method based on frequency-modulated continuous wave coherent lidar is proposed. Combined with a random iteration algorithm, a long-pulse echo signal with coher
Modulation of a vector light field has played an important role in the research of nanophotonics. However, it is still a great challenge to accurately measure the three-dimensional vector distribution at nanoscale. Here, based on
In the femtosecond two-photon polymerization (2PP) experimental system, optical aberrations degrade the fabrication quality. To solve this issue, a multichannel interferometric wavefront sensing technique is adopted in the adaptiv
Overlay (OVL) for patterns placed at two different layers during microchip production is a key parameter that controls the manufacturing process. The tolerance of OVL metrology for the latest microchip needs to be at nanometer sca
We have successfully generated a 1.3/1.4 µm random fiber laser (RFL) using bismuth (Bi)-doped phosphosilicate fiber. The Bi-doped RFL has shown excellent long-term operational stability with a standard deviation of approximately 0
We demonstrate spectral-furcated vector solitons in normal-dispersion fiber lasers comprising a section of polarization-maintaining fiber. The spectrum of each orthogonal-polarized component is confined by the birefringence-relate
The terahertz photonics technique has bright application prospects in future sixth-generation (6G) broadband communication. In this study, we have experimentally demonstrated a photonics-assisted record-breaking net bit rate of 41
All-dielectric metasurfaces are usually limited because of their static functionality and small scale. In this paper, we use an easy nanofabrication technique to fabricate all-dielectric metasurfaces with the advantages of having
The self-focusing phenomenon of partially coherent beams (PCBs) was simulated using the complex screen method combined with the split-step Fourier method to solve the nonlinear Schrödinger equation. Considering the propagation of
Scintillators are the vital component in X-ray perspective image technology that is applied in medical imaging, industrial nondestructive testing, and safety testing. But the high cost and small size of single-crystal commercializ
We numerically demonstrate that the tight focusing of Bessel beams can generate focal fields with an ultra-long depth of focus (DOF). The ultra-long focal field can be controlled by appropriately regulating the order of the Bessel
Multimode photonic quantum memory could enhance the information processing speed in a quantum repeater-based quantum network. A large obstacle that impedes the storage of the spatial multimode in a hot atomic ensemble is atomic di
A cylindrical Öffner stretcher based on ternary reflector (COSTER) is proposed and analyzed. Compared with the traditional Öffner stretcher, the COSTER has no off-axis aberration in the multipass configuration, and the output lase