This feature issue is the second Joint Applied Optics (AO) and Chinese Optics Letters (COL) Feature Issue on digital holography and three-dimensional (3D) imaging. The first installment of such a joint feature issue was in 2011. In the present feature issue, there are a total of 24 papers in AO and 9 papers in COL. This feature issue contains a representative selection of topics that were presented at the OSA Topical Meeting on Digital Holography and 3D Imaging (DH), held in Shanghai, China, May 2015. The DH Topical Meeting is the world’s premier forum for science, technology, and applications of the digital holograph, and three-dimensional imaging and display methods. The topic areas include interferometry, phase microscopy, novel holographic processes, 3D and novel displays, integral imaging, computer-generated holograms, compressive holography, full-field tomography, and holography with various light sources, including coherent to incoherent and x-ray to terahertz waves. This is a highly interdisciplinary forum with applications in biomedicine, biophotonics, nanomaterials, nanophotonics, and scientific and industrial metrologies. All submitted papers, including invited papers, have undergone peer review. We hope these articles will present state-of-the-art technological developments that are currently under way and stimulate further novel applications of digital holography and 3D imaging. The next DH meeting is scheduled to be held on July 25–28, 2016, at Heidelberg, Germany. DH 2017 will take place in Korea.
One of the most fascinating principles in quantum mechanics must be Heisenberg’s uncertainty principle, which can be briefly stated as follows: every physical observation cannot be precisely determined without some degree of error
This paper presents progress on the characterization of guided-wave light modulators for use in a low-cost holographic video monitor based on the MIT scanned-aperture architecture. A custom-built characterization apparatus was use
Past research has demonstrated that a phase-only hologram can be obtained by down-sampling the intensity image of the object scene prior to the generation of the hologram. In this Letter, we extend the method to the generation of
A time-division multiplexing method for computer-generated holograms (CGHs) is proposed to solve the problem of the limited space-bandwidth product. A three-dimensional (3-D) scene is divided into multiple layers at different dept
Anisotropic edge enhancement is simulated using a spiral phase plate (SPP) in optical scanning holography (OSH). We propose to use a delta function and an SPP as the pupil functions to realize anisotropic edge enhancement. The int
A novel method for a full-parallax three-dimensional (3D) holographic display by means of a lens array and a holographic functional screen is proposed. The process of acquisition, coding, restoration, and display is described in d
We present a polarization-multiplexing off-axis Mach–Zehnder configuration for dual-wavelength digital holography to achieve phase imaging in one shot. In this configuration, two orthogonal linear-polarized waves with respect to d
A polarization holographic grating, which integrates the functions of a grating and a wave plate and is called a diffractive wave plate, is recorded by two beams (left and right circularly polarized) of a 532 nm laser in an azo po
Because the bottom of the cavity has the shadow and occlusion, the angle between the projection system and imaging system is limited. So the traditional fringe projection technique based on the principle of optical triangulation i