Laser & Optoelectronics Progress, Volume. 58, Issue 4, 0410016(2021)
Strip Defect Classification Based on Improved Generative Adversarial Networks and MobileNetV3
[2] Neogi N, Mohanta D K, Dutta P K. Review of vision-based steel surface inspection systems[J]. EURASIP Journal on Image and Video Processing, 2014, 1-19(2014).
[3] Saito K, Ushiku Y, Harada T et al. Strong-weak distribution alignment for adaptive object detection[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 15-20, 2019, Long Beach, CA, USA., 6949-6958(2019).
[4] Yang F, Fan H, Chu P et al. Clustered object detection in aerial images[C]∥2019 IEEE/CVF International Conference on Computer Vision (ICCV), October 27-November 2, 2019, Seoul, Korea (South)., 8310-8319(2019).
[5] Yan Z Y, Yuan Y C, Zuo W M et al. Perspective-guided convolution networks for crowd counting[C]∥2019 IEEE/CVF International Conference on Computer Vision (ICCV), October 27-November 2, 2019, Seoul, Korea (South)., 952-961(2019).
[9] Bengio Y, Delalleau O. On the expressive power of deep architectures[M]. ∥Elomaa T, Hollmén J, Mannila H, et al. Discovery Science. DS 2011. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 6926, 1(2011).
[10] Vannocci M, Ritacco A, Castellano A et al. Flatness defect detection and classification in hot rolled steel strips using convolutional neural networks. [C]∥15th International Work Conference on Artificial Neural Networks(IWANN),June 12-14,2019,Gran Canaria, Spain. Cham: Springer, 220-234(2019).
[12] Mi Z S, Song Y H, Yan Y. A defect classification network based on deformation dense connection in wire rod surface image[C]∥2019 2nd China Symposium on Cognitive Computing and Hybrid Intelligence (CCHI), September 21-22, 2019, 155-160(2019).
[14] Goodfellow I, Pouget-Abadie J, Mirza M et al. Generative adversarial nets[C]∥27th International Conference on Neural Information Processing Systems(NIPS), December 8-13, 2014, Montreal, Canada., 2672-2680(2014).
[15] Mirza M, Osindero S[2020-06-20]. Conditional generative adversarial nets [2020-06-20].https:∥arxiv., org/abs/1411, 1784.
[16] Radford A, Metz L, Chintala S[2020-06-24]. Unsupervised representation learning with deep convolutional generative adversarial networks [2020-06-24].https:∥arxiv., org/abs/1511, 06434.
[18] Yi C, Cho J. Improving the performance of multimedia pedestrian classification with images synthesized using a deep convolutional generative adversarial network[J]. Multimedia Tools and Applications, 89, 1-16(2020).
[19] Odena A, Olah C, Shlens J[2020-06-21]. Conditional image synthesis with auxiliary classifier GANs [2020-06-21].https:∥arxiv., org/abs/1610, 09585.
[20] Howard A, Sandler M, Chen B et al. Searching for MobileNetV3[C]∥2019 IEEE/CVF International Conference on Computer Vision (ICCV), October 27-November 2, 2019, Seoul, Korea (South)., 1314-1324(2019).
[21] Song K C, Yan Y H. A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects[J]. Applied Surface Science, 285, 858-864(2013).
Get Citation
Copy Citation Text
Jiang Chang, Shengqi Guan, Hongyu Shi, Luping Hu, Yiqi Ni. Strip Defect Classification Based on Improved Generative Adversarial Networks and MobileNetV3[J]. Laser & Optoelectronics Progress, 2021, 58(4): 0410016
Category: Image Processing
Received: Jul. 6, 2020
Accepted: Aug. 6, 2020
Published Online: Feb. 24, 2021
The Author Email: Guan Shengqi (sina1300841@163.com)