Acta Optica Sinica, Volume. 43, Issue 7, 0714003(2023)

1550 nm High-Power Fundamental Transverse Mode Semiconductor Laser and Its Temperature Characteristics

Jinyuan Chang1,2, Cong Xiong1、*, Qiong Qi1, Cuiluan Wang1, Lingni Zhu1, Zhipeng Pan1,2, Zhennuo Wang1,2, Suping Liu1, and Xiaoyu Ma1
Author Affiliations
  • 1National Engineering Research Center for Optoelectronic Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(31)

    [1] Man Y X, Zhong L, Ma X Y et al. 975 nm semiconductor lasers with ultra-low internal optical loss[J]. Acta Optica Sinica, 40, 1914001(2020).

    [2] Ryvkin B S, Avrutin E A. Nonbroadened asymmetric waveguide diode lasers promise much narrower far fields than broadened symmetric waveguide ones[J]. Journal of Applied Physics, 98, 026107(2005).

    [3] Plant J J, Juodawlkis P W, Huang R K et al. 1.5-μm InGaAsP-InP slab-coupled optical waveguide lasers[J]. IEEE Photonics Technology Letters, 17, 735-737(2005).

    [4] Kaul T, Erbert G, Maassdorf A et al. Extreme triple asymmetric (ETAS) epitaxial designs for increased efficiency at high powers in 9xx-nm diode lasers[J]. Proceedings of SPIE, 10514, 105140A(2018).

    [5] Hu C W, Lee F M, Huang K F et al. Linear GRINSCH 1.55-μm InGaAsP/InP strained multiple quantum well laser diodes grown by substrate temperature control[J]. Journal of the Electrochemical Society, 153, G309(2006).

    [6] Menna R, Komissarov A, Maiorov M et al. High power 1550 nm distributed feedback lasers with 440 mW CW output power for telecommunication applications[C], CPD12-CP1(2001).

    [7] Ke Q. Study on 1.55 μm InP-based high power semiconductor DFB laser[D](2015).

    [8] Xiong D, Guo W T, Guo X F et al. Simulation and fabrication of 1.55 μm AlGaInAs/InP quantum well lasers with low beam divergence[J]. Journal of Infrared and Millimeter Waves, 412-418(2019).

    [9] Wang H, Zhang R K, Lu D et al. 1.55-μm high-power high-speed directly modulated semiconductor laser array[J]. Acta Optica Sinica, 39, 0914001(2019).

    [10] Lang R. Lateral transverse mode instability and its stabilization in stripe geometry injection lasers[J]. IEEE Journal of Quantum Electronics, 15, 718-726(1979).

    [11] Ten Cate J W R, Weegels L M, van Bakel A H et al. Kinks induced by free-carrier absorption in weakly index guided semiconductor lasers[J]. Applied Physics Letters, 71, 19-21(1997).

    [12] Takada H, Numai T. Ridge-type semiconductor lasers with antiguiding cladding layers for horizontal transverse modes[J]. IEEE Journal of Quantum Electron, 45, 917-922(2009).

    [13] Yuda M, Hirono T, Kozen A et al. Improvement of kink-free output power by using highly resistive regions in both sides of the ridge stripe for 980-nm laser diodes[J]. IEEE Journal of Quantum Electronics, 40, 1203-1207(2004).

    [14] Buda M, Tan H H, Fu L et al. Improvement of the kink-free operation in ridge-waveguide laser diodes due to coupling of the optical field to the metal layers outside the ridge[J]. IEEE Photonics Technology Letters, 15, 1686-1688(2003).

    [15] Miyashita M, Nakayama T, Takase T et al. High-power red laser mode for recordable DVDs[J]. Proceedings of SPIE, 5365, 148-154(2004).

    [16] Zou D S, Lian P, Xu C et al. Study on kinks in P-I characteristic curves of semiconductor quantum-well stripe geometry lasers[J]. Journal of Optoelectronics·Laser, 13, 547-549(2002).

    [17] Shigihara K, Kawasaki K, Yamamura S et al. High-power and highly reliable 1020-nm ridge waveguide laser diodes with small aspect ratio as a pumping source for praseodymium-doped fiber amplifiers[J]. IEEE Photonics Technology Letters, 15, 640-642(2003).

    [18] Ivanov A V, Kurnosov V D, Kurnosov K V et al. Refractive indices of solid AlGaInAs solutions[J]. Quantum Electronics, 37, 545-548(2007).

    [19] Zhang N L, Jing H Q, Yuan Q H et al. High power 1060 nm tapered laser[J]. Acta Optica Sinica, 42, 0514002(2022).

    [20] Wenzel H, Erbert G, Knauer A et al. Influence of current spreading on the transparency current density of quantum-well lasers[J]. Semiconductor Science and Technology, 15, 557-560(2000).

    [21] Coldren L A, Corzin S W[M]. Diode lasers and photonic integrated circuits. Shi H X, Transl(2006).

    [22] Pikhtin N A, Slipchenko S O, Sokolova Z N et al. Internal optical loss in semiconductor lasers[J]. Semiconductors, 38, 360-367(2004).

    [23] Yoshida Y, Watanabe H, Shibata K et al. Analysis of characteristic temperature for InGaAsP BH lasers with p-n-p-n blocking layers using two-dimensional device simulator[J]. IEEE Journal of Quantum Electronics, 34, 1257-1262(1998).

    [24] Ryvkin B, Avrutin E. Heating-induced carrier accumulation in the optical confinement layer and the output power in broadened symmetric and narrow asymmetric waveguide laser diodes[J]. Journal of Applied Physics, 101, 123115(2007).

    [25] Zhang Y X, Wang J W, Wu D et al. A new package structure for high power single emitter semiconductor laser and performance analysis[J]. Chinese Journal of Lasers, 37, 1186-1191(2010).

    [26] Tan W K, Wong H Y, Kelly A E et al. Temperature behaviour of pulse repetition frequency in passively mode-locked InGaAsP/InP laser diode: experimental results and simple model[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 1209-1214(2007).

    [27] Chusseau L, Martin P, Brasseur C et al. Carrier-induced change due to doping in refractive index of InP: measurements at 1.3 and 1.5 μm[J]. Applied Physics Letters, 69, 3054-3056(1996).

    [28] Horie H, Arai N, Mitsuishi Y et al. Greater than 500-mW CW kink-free single transverse-mode operation of weakly index guided buried-stripe type 980-nm laser diodes[J]. IEEE Photonics Technology Letters, 12, 1304-1306(2000).

    [29] Guthrie J, Tan G L, Ohkubo M et al. Beam instability in 980-nm power lasers: experiment and analysis[J]. IEEE Photonics Technology Letters, 6, 1409-1411(1994).

    [30] Liu C. Fundamental lateral mode characteristics of the 852 nm ridge waveguide semiconductor laser diode[D](2017).

    [31] Yagi T, Nishiguchi H, Yoshida Y et al. High-power, high-efficiency 660-nm laser diodes for DVD-R/RW[J]. IEEE Journal of Selected Topics Quantum Electronics, 9, 1260-1264(2003).

    Tools

    Get Citation

    Copy Citation Text

    Jinyuan Chang, Cong Xiong, Qiong Qi, Cuiluan Wang, Lingni Zhu, Zhipeng Pan, Zhennuo Wang, Suping Liu, Xiaoyu Ma. 1550 nm High-Power Fundamental Transverse Mode Semiconductor Laser and Its Temperature Characteristics[J]. Acta Optica Sinica, 2023, 43(7): 0714003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Sep. 30, 2022

    Accepted: Oct. 31, 2022

    Published Online: Apr. 6, 2023

    The Author Email: Xiong Cong (xiongcong@semi.ac.cn)

    DOI:10.3788/AOS221772

    Topics