Chinese Journal of Lasers, Volume. 48, Issue 15, 1502004(2021)

Research Advancement on Laser Micro-Nano Processing of New Energy Devices

Ce Yang1,2, Huhu Cheng1,2、**, and Liangti Qu1,2、*
Author Affiliations
  • 1State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
  • 2Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China;
  • show less
    References(92)

    [1] Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 7, 845-854(2008).

    [2] Zhao Y, Liu J, Hu Y et al. Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes[J]. Advanced Materials, 25, 591-595(2013).

    [3] Bruce P G, Freunberger S A, Hardwick L J et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 11, 19-29(2011).

    [5] Lee M M, Teuscher J, Miyasaka T et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 338, 643-647(2012).

    [6] Meng L X, Zhang Y M, Wan X J et al. Organic and solution-processed tandem solar cells with 17.3% efficiency[J]. Science, 361, 1094-1098(2018).

    [7] Zhao F, Cheng H H, Zhang Z P et al. Direct power generation from a graphene oxide film under moisture[J]. Advanced Materials, 27, 4351-4357(2015).

    [8] Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 312, 242-246(2006).

    [9] Gao W, Singh N, Song L et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films[J]. Nature Nanotechnology, 6, 496-500(2011).

    [10] Li Y B, Fu J, Zhong C et al. Batteries: recent advances in flexible zinc-based rechargeable batteries[J]. Advanced Energy Materials, 9, 1970001(2019).

    [11] Hu H, Li Q, Li L Q et al. Laser irradiation of electrode materials for energy storage and conversion[J]. Matter, 3, 95-126(2020).

    [12] Jiang L, Wang A D, Li B et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application[J]. Light, Science & Applications, 7, 17134(2018).

    [13] Jafari D, Wits W W. The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: a review[J]. Renewable and Sustainable Energy Reviews, 91, 420-442(2018).

    [14] Zhao Y, Han Q, Cheng Z H et al. Integrated graphene systems by laser irradiation for advanced devices[J]. Nano Today, 12, 14-30(2017).

    [15] Yang T S, Lin H, Jia B H. Two-dimensional material functional devices enabled by direct laser fabrication[J]. Frontiers of Optoelectronics, 11, 2-22(2018).

    [16] Liu C G, Yu Z N, Neff D et al. Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Letters, 10, 4863-4868(2010).

    [17] Chen Q, Meng Y N, Hu C G et al. MnO2-modified hierarchical graphene fiber electrochemical supercapacitor[J]. Journal of Power Sources, 247, 32-39(2014).

    [18] Fu X Y, Chen Z D, Han D D et al. Laser fabrication of graphene-based supercapacitors[J]. Photonics Research, 8, 577-588(2020).

    [19] Zhang D S, Gökce B, Barcikowski S. Laser synthesis and processing of colloids: fundamentals and applications[J]. Chemical Reviews, 117, 3990-4103(2017).

    [21] Park J B, Xiong W, Xie Z Q et al. Transparent interconnections formed by rapid single-step fabrication of graphene patterns[J]. Applied Physics Letters, 99, 053103(2011).

    [22] Ye R Q, James D K, Tour J M. Laser-induced graphene[J]. Accounts of Chemical Research, 51, 1609-1620(2018).

    [23] Lee S, Toney M F, Ko W et al. Laser-synthesized epitaxial graphene[J]. ACS Nano, 4, 7524-7530(2010).

    [24] Trabelsi A B G, Kusmartsev F V, Gaifullin M B et al. Morphological imperfections of epitaxial graphene: from a hindrance to the generation of new photo-responses in the visible domain[J]. Nanoscale, 9, 11463-11474(2017).

    [25] Li Q, Ding Q, Yang L J et al. Nanostructure and electrochemical performance of graphene oxide by irradiation of femtosecond laser[J]. Chinese Journal of Lasers, 48, 0802022(2021).

    [26] Guo H, Yan J F, Li X et al. Patterned graphene oxide by spatially-shaped femtosecond laser[J]. Chinese Journal of Lasers, 48, 0202018(2021).

    [27] Lin J, Peng Z W, Liu Y Y et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications, 5, 5714(2014).

    [28] Duy L X, Peng Z W, Li Y L et al. Laser-induced graphene fibers[J]. Carbon, 126, 472-479(2018).

    [29] Hwang J Y, Li M P, El-Kady M F et al. Next-generation activated carbon supercapacitors: a simple step in electrode processing leads to remarkable gains in energy density[J]. Advanced Functional Materials, 27, 1605745(2017).

    [30] Luong D X, Subramanian A K, Silva G A L et al. Laminated object manufacturing of 3D-printed laser-induced graphene foams[J]. Advanced Materials, 30, e1707416(2018).

    [31] El-Kady M F, Strong V, Dubin S et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 335, 1326-1330(2012).

    [32] El-Kady M F, Kaner R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage[J]. Nature Communications, 4, 1475(2013).

    [33] Liang Y, Wang Z, Huang J et al. Series of in-fiber graphene supercapacitors for flexible wearable devices[J]. Journal of Materials Chemistry A, 3, 2547-2551(2015).

    [34] Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy & Environmental Science, 7, 1597-1614(2014).

    [35] Clerici F, Fontana M, Bianco S et al. In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes[J]. ACS Applied Materials & Interfaces, 8, 10459-10465(2016).

    [36] Ye R Q, Peng Z W, Wang T et al. In situ formation of metal oxide nanocrystals embedded in laser-induced graphene[J]. ACS Nano, 9, 9244-9251(2015).

    [37] Li R Z, Peng R, Kihm K D et al. High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes[J]. Energy & Environmental Science, 9, 1458-1467(2016).

    [38] Hwang J Y, El-Kady M F, Li M P et al. Boosting the capacitance and voltage of aqueous supercapacitors via redox charge contribution from both electrode and electrolyte[J]. Nano Today, 15, 15-25(2017).

    [39] Sun F, Gao J H, Zhu Y W et al. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode[J]. Scientific Reports, 7, 40990(2017).

    [40] Hwang J Y, El-Kady M F, Wang Y et al. Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage[J]. Nano Energy, 18, 57-70(2015).

    [41] Fu X Y, Zhang Y L, Jiang H B et al. Hierarchically structuring and synchronous photoreduction of graphene oxide films by laser holography for supercapacitors[J]. Optics Letters, 44, 1714-1717(2019).

    [42] Wen F S, Hao C X, Xiang J Y et al. Enhanced laser scribed flexible graphene-based micro-supercapacitor performance with reduction of carbon nanotubes diameter[J]. Carbon, 75, 236-243(2014).

    [43] Wang X P, Lü L, Cheng Z H et al. High-density monolith of N-doped holey graphene for ultrahigh volumetric capacity of Li-ion batteries[J]. Advanced Energy Materials, 6, 1502100(2016).

    [44] Ye M H, Hu C G, Lü L et al. Graphene-winged carbon nanotubes as high-performance lithium-ion batteries anode with super-long cycle life[J]. Journal of Power Sources, 305, 106-114(2016).

    [46] Teng X L, Qin Y Z, Wang X et al. A nanocrystalline Fe2O3 film anode prepared by pulsed laser deposition for lithium-ion batteries[J]. Nanoscale Research Letters, 13, 1-7(2018).

    [47] Rambabu A, Senthilkumar B, Sada K et al. In-situ deposition of sodium titanate thin film as anode for sodium-ion micro-batteries developed by pulsed laser deposition[J]. Journal of Colloid and Interface Science, 514, 117-121(2018).

    [48] Cao L, Wang D X, Wang R. NiO thin films grown directly on Cu foils by pulsed laser deposition as anode materials for lithium ion batteries[J]. Materials Letters, 132, 357-360(2014).

    [49] Fan S T, Zhang J, Teng X L et al. Self-supported amorphous SnO2/TiO2 nanocomposite films with improved electrochemical performance for lithium-ion batteries[J]. Journal of the Electrochemical Society, 166, A3072-A3078(2019).

    [50] Retoux R, Brousse T, Schleich D M. High-resolution electron microscopy investigation of capacity fade in SnO2 electrodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 146, 2472-2476(1999).

    [51] Qin Y Z, Li Q, Xu J et al. CoO-Co nanocomposite anode with enhanced electrochemical performance for lithium-ion batteries[J]. Electrochimica Acta, 224, 90-95(2017).

    [53] Ohta N, Takada K, Zhang L et al. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification[J]. Advanced Materials, 18, 2226-2229(2006).

    [54] Pfenninger R, Struzik M, Garbayo I et al. A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films[J]. Nature Energy, 4, 475-483(2019).

    [55] Leedy K D, Chabak K D, Vasilyev V et al. Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition[J]. Applied Physics Letters, 111, 012103(2017).

    [56] Wang L P, Leconte Y, Feng Z X et al. Novel preparation of N-doped SnO2 nanoparticles via laser-assisted pyrolysis: demonstration of exceptional lithium storage properties[J]. Advanced Materials, 29, 1603286(2017).

    [57] Zhang F, Alhajji E, Lei Y J et al. Highly doped 3D graphene Na-ion battery anode by laser scribing polyimide films in nitrogen ambient[J]. Advanced Energy Materials, 8, 1800353(2018).

    [58] Kim T H, Song H K, Kim S et al. Production of germanium nanoparticles via laser pyrolysis for anode materials of lithium-ion batteries and sodium-ion batteries[J]. Nanotechnology, 30, 275603(2019).

    [59] Bang B M, Kim H, Lee J P et al. Mass production of uniform-sized nanoporous silicon nanowire anodes via block copolymer lithography[J]. Energy & Environmental Science, 4, 3395-3399(2011).

    [60] Sämann C, Kelesiadou K, Hosseinioun S S et al. Laser porosificated silicon anodes for lithium ion batteries[J]. Advanced Energy Materials, 8, 1701705(2018).

    [61] Chen N, Yan B, Li Z J et al. Gaussian pulsed laser etching of CVD diamonds[J]. Chinese Journal of Lasers, 47, 1202007(2020).

    [62] Li J Q, Yan J F, Li X et al. Research advancement on ultrafast laser microprocessing of transparent dielectrics[J]. Chinese Journal of Lasers, 48, 0202019(2021).

    [63] Chen L, Liu X D, Liu J et al. Microgroove etching with femtosecond laser on quartz glass surfaces[J]. Acta Optica Sinica, 40, 2314001(2020).

    [64] Yin Y, Liu Z J, Wang S J et al. High-precision ITO electrode wet etching technology based on maskless lithography[J]. Laser & Optoelectronics Progress, 57, 032202(2020).

    [66] Lu L Y, Zheng T Y, Wu Q H et al. Recent advances in bulk heterojunction polymer solar cells[J]. Chemical Reviews, 115, 12666-12731(2015).

    [67] Park J H, Seo J, Park S et al. Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition[J]. Advanced Materials, 27, 4013-4019(2015).

    [68] Irwin M D, Buchholz D B, Hains A W et al. P-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells[J]. Proceedings of the National Academy of Sciences, 105, 2783-2787(2008).

    [69] Sauvage F, Di Fonzo F, Li Bassi A et al. Hierarchical TiO2 photoanode for dye-sensitized solar cells[J]. Nano Letters, 10, 2562-2567(2010).

    [70] Lee S, Noh J H, Han H S et al. Nb-doped TiO2: a new compact layer material for TiO2 dye-sensitized solar cells[J]. The Journal of Physical Chemistry C, 113, 6878-6882(2009).

    [71] Ghosh R, Brennaman M K, Uher T et al. Nanoforest Nb2O5 photoanodes for dye-sensitized solar cells by pulsed laser deposition[J]. ACS Applied Materials & Interfaces, 3, 3929-3935(2011).

    [72] Haase F, Hollemann C, Schäfer S et al. Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells[J]. Solar Energy Materials and Solar Cells, 186, 184-193(2018).

    [73] Moholkar A V, Shinde S S, Babar A R et al. Development of CZTS thin films solar cells by pulsed laser deposition: influence of pulse repetition rate[J]. Solar Energy, 85, 1354-1363(2011).

    [74] Zhao F, Liang Y, Cheng H H et al. Highly efficient moisture-enabled electricity generation from graphene oxide frameworks[J]. Energy & Environmental Science, 9, 912-916(2016).

    [75] Cheng H H, Hu C G, Zhao Y et al. Graphene fiber: a new material platform for unique applications[J]. NPG Asia Materials, 6, e113(2014).

    [77] Cheng H H, Liu J, Zhao Y et al. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots[J]. Angewandte Chemie International Edition, 52, 10482-10486(2013).

    [79] Cheng H H, Ye M H, Zhao F et al. A general and extremely simple remote approach toward graphene bulks with in situ multifunctionalization[J]. Advanced Materials, 28, 3305-3312(2016).

    [80] Cheng H H, Huang Y X, Qu L T et al. Flexible in-plane graphene oxide moisture-electric converter for touchless interactive panel[J]. Nano Energy, 45, 37-43(2018).

    [81] Lee S, Jang H, Lee H et al. Direct fabrication of a moisture-driven power generator by laser-induced graphitization with a gradual defocusing method[J]. ACS Applied Materials & Interfaces, 11, 26970-26975(2019).

    [82] Huang Y X, Cheng H H, Yang C et al. Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts[J]. Nature Communications, 9, 4166(2018).

    [83] Liang Y, Zhao F, Cheng Z H et al. Self-powered wearable graphene fiber for information expression[J]. Nano Energy, 32, 329-335(2017).

    [84] Xu S, Zhang Y H, Cho J et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems[J]. Nature Communications, 4, 1543(2013).

    [85] Xu S, Zhang Y H, Jia L et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin[J]. Science, 344, 70-74(2014).

    [87] Liu Y H, Xu J L, Gao X et al. Freestanding transparent metallic network based ultrathin, foldable and designable supercapacitors[J]. Energy & Environmental Science, 10, 2534-2543(2017).

    [88] Zang X N, Shen C W, Chu Y et al. Laser-induced molybdenum carbide-graphene composites for 3D foldable paper electronics[J]. Advanced Materials, 30, e1800062(2018).

    [89] Shao C X, Xu T, Gao J et al. Flexible and integrated supercapacitor with tunable energy storage[J]. Nanoscale, 9, 12324-12329(2017).

    [90] Chen Z D, Li J C, Xiao S L et al. Laser reduced graphene oxide for thin film flexible electronic devices[J]. Laser & Optoelectronics Progress, 57, 111428(2020).

    [91] Yang C, Huang Y X, Cheng H H et al. Rollable, stretchable, and reconfigurable graphene hygroelectric generators[J]. Advanced Materials, 31, 1805705(2019).

    [92] Lü Z, Luo Y F, Tang Y X et al. Stretchable supercapacitors: editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong MnO2 nanowire composite[J]. Advanced Materials, 30, 1870008(2018).

    Tools

    Get Citation

    Copy Citation Text

    Ce Yang, Huhu Cheng, Liangti Qu. Research Advancement on Laser Micro-Nano Processing of New Energy Devices[J]. Chinese Journal of Lasers, 2021, 48(15): 1502004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Mar. 29, 2021

    Accepted: Jun. 2, 2021

    Published Online: Aug. 5, 2021

    The Author Email: Huhu Cheng (huhucheng@tsinghua.edu.cn), Liangti Qu (lqu@mail.tsinghua.edu.cn)

    DOI:10.3788/CJL202148.1502004

    Topics