Chinese Journal of Lasers, Volume. 50, Issue 24, 2402203(2023)
Study of Femtosecond Laser Ablation and Polishing Process on RB‑SiC Surface
[1] East M, Knight J S, Allen L et al. Material selection for far infrared telescope mirrors[J]. Proceedings of SPIE, 10698, 106891N(2018).
[2] Kumar S. A review on Zerodur material strength behaviour with lightweighted design[J]. Materialstoday: Proceedings, 37, 3643-3645(2021).
[3] Hull T B, Krieg J, Westerhoff T et al. Parameters for mirror selection: trades between glass ceramics, glass, metals, ceramics and cordierites[J]. Proceedings of SPIE, 11443, 1144365(2020).
[4] Da Deppo V, Pace E, Morgante G et al. A prototype for the primary mirror of the ESA ARIEL mission: design and development of an off-axis 1-m diameter aluminum mirror for infrared space applications[J]. Proceedings of SPIE, 10706, 1070632(2018).
[5] Da Deppo V, Pace E, Morgante G et al. Study and realization of a prototype of the primary off-axis 1-m diameter aluminium mirror for the ESA ARIEL mission[J]. Proceedings of SPIE, 11180, 111806V(2019).
[6] Greger R, Rugi E, Hausner T et al. Development of technology for lightweight Beryllium Cassegrain Telescope for space applications and lessons learnt[J]. Proceedings of SPIE, 10564, 105643S(2017).
[7] Mutters D K. Mirror topology optimization[J]. Proceedings of SPIE, 11100, 1110009(2019).
[8] Dong Z C, Cheng H B. Ductile mode grinding of reaction-bonded silicon carbide mirrors[J]. Applied Optics, 56, 7404-7412(2017).
[9] Nguyen T, Liu D, Thongkaew K et al. The wear mechanisms of reaction bonded silicon carbide under abrasive polishing and slurry jet impact conditions[J]. Wear, 410/411, 156-164(2018).
[10] Liang H Q, Yao X M, Zhang H et al. Friction and wear behavior of pressureless liquid phase sintered SiC ceramic[J]. Materials & Design, 65, 370-376(2015).
[11] Chen S S, Cheung C F, Zhang F H. An experimental and theoretical analysis of surface generation in the ultra-precision grinding of hard and brittle materials[J]. The International Journal of Advanced Manufacturing Technology, 97, 2715-2729(2018).
[12] Zhang Q L, To S, Zhao Q L et al. Impact of material microstructure and diamond grit wear on surface finish in micro-grinding of RB-SiC/Si and WC/Co carbides[J]. International Journal of Refractory Metals and Hard Materials, 51, 258-263(2015).
[13] Wang X, Zhang X J. Theoretical study on removal rate and surface roughness in grinding a RB-SiC mirror with a fixed abrasive[J]. Applied Optics, 48, 904-910(2009).
[14] Lin C, Xu Y C. Research status of abrasive polishing technology for single crystal sapphire substrate[J]. Journal of Fujian University of Technology, 19, 216-222(2021).
[15] Tam H Y, Cheng H B, Wang Y W. Removal rate and surface roughness in the lapping and polishing of RB-SiC optical components[J]. Journal of Materials Processing Technology, 192/193, 276-280(2007).
[16] Zhou Y F, Zhang Y M, Han J C et al. Design and fabrication of large-scale RB-SiC mirror[J]. Proceedings of SPIE, 6721, 67210S(2007).
[17] Tang H D, Huang Z R, Tan S H. PVD SiC and PVD Si coatings on RB SiC for surface modification[J]. Proceedings of SPIE, 6149, 61490A(2006).
[18] Kang N H, Li S Y, Zheng Z W et al. Experimental research on super-smooth polishing process of typical silicon carbide materials[J]. China Mechanical Engineering, 19(2008).
[19] Shen X M, Tu Q Z, Deng H et al. Mechanism analysis on finishing of reaction-sintered silicon carbide by combination of water vapor plasma oxidation and ceria slurry polishing[J]. Optical Engineering, 54, 055106(2015).
[20] Serrano P A A, Kim M, Kim D R et al. Spherical mirror and surface patterning on silicon carbide (SiC) by material removal rate enhancement using CO2 laser assisted polishing[J]. International Journal of Precision Engineering and Manufacturing, 21, 775-785(2020).
[21] Yan Q S, Wang X, Xiong Q et al. The influences of technological parameters on the ultraviolet photocatalytic reaction rate and photocatalysis-assisted polishing effect for SiC[J]. Journal of Crystal Growth, 531, 125379(2020).
[22] Chen G M, Du C K, Ni Z F et al. The effect of surface polarity on the CMP behavior of 6H-SiC substrates[J]. Russian Journal of Applied Chemistry, 93, 832-837(2020).
[23] Yin X C, Li S J, Chai P. Investigation of SiC single crystal polishing by combination of anodic oxidation and mechanical polishing[J]. International Journal of Electrochemical Science, 15, 4388-4405(2020).
[24] Park S H, Liu P P, Yi K et al. Mechanical properties estimation of additively manufactured metal components using femtosecond laser ultrasonics and laser polishing[J]. International Journal of Machine Tools and Manufacture, 166, 103745(2021).
[25] Ren Y M, Zhang Z Y. Surface of nanosecond laser polished single-crystal silicon improved by two-step laser irradiation[J]. Acta Optica Sinica, 42, 0714004(2022).
[26] Li X X, Li X, Wang Y M et al. Laser precision processing lightens intelligent manufacturing[J]. Chinese Journal of Lasers, 49, 1902001(2022).
[27] Taylor L L, Qiao J, Qiao J E. Femtosecond laser polishing of optical materials[J]. Proceedings of SPIE, 9633, 96330M(2015).
[28] Xu Y F, Shao J Z, Lin Y et al. Research progress of laser surface polishing of hard and brittle materials[J]. Laser & Optoelectronics Progress, 59, 1300003(2022).
[29] Shao Y, Sun S F, Liu G L et al. Laser-assisted thermochemical ultrahigh-precision polishing of titanium in phosphoric acid solution[J]. The International Journal of Advanced Manufacturing Technology, 115, 1201-1210(2021).
[30] Zhao Y, Wang S, Yu W H et al. Simulation and experimental study of laser processing NdFeB microarray structure[J]. Micromachines, 14, 808(2023).
[31] Zheng Q Z, Cui J L, Fan Z J et al. Investigation on the underwater femtosecond laser polishing SiC ceramic[J]. Ferroelectrics, 564, 28-36(2020).
[32] Zheng Q Z, Cui J L, Fan Z J et al. An experimental investigation of scan trajectory into the underwater femtosecond laser polishing SiC ceramic[J]. Ferroelectrics, 563, 77-86(2020).
[33] Jiang L, Wang A D, Li B et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application[J]. Light: Science & Applications, 7, 17134(2018).
[34] Liu J K, Zhao H W, Wang H et al. Numerical simulation of femtosecond laser ablation Au by two-temperature model[J]. Journal of Technology, 18, 63-66(2018).
[35] Hu W Q, Shin Y C, King G. Modeling of multi-burst mode pico-second laser ablation for improved material removal rate[J]. Applied Physics A, 98, 407-415(2010).
[36] Zhang H Z, Wang H Y, Liu F F et al. Investigation on femtosecond laser ablative processing of SiCp/AA2024 composites[J]. Journal of Manufacturing Processes, 49, 227-233(2020).
[37] Kawamura T, Hori D, Kangawa Y et al. Thermal conductivity of SiC calculated by molecular dynamics[J]. Japanese Journal of Applied Physics, 47, 8898-8901(2008).
[38] van Driel H M. Kinetics of high-density plasmas generated in Si by 1.06-μm and 0.53-μmpicosecond laser pulses[J]. Physical Review B, 35, 8166-8176(1987).
[39] Choi T Y, Grigoropoulos C P. Plasma and ablation dynamics in ultrafast laser processing of crystalline silicon[J]. Journal of Applied Physics, 92, 4918-4925(2002).
Get Citation
Copy Citation Text
Huan Chen, Chaoyang Wei, Zhen Cao, Xiaocong Peng, Jianda Shao. Study of Femtosecond Laser Ablation and Polishing Process on RB‑SiC Surface[J]. Chinese Journal of Lasers, 2023, 50(24): 2402203
Category: Laser Surface Machining
Received: Mar. 28, 2023
Accepted: Jul. 12, 2023
Published Online: Oct. 24, 2023
The Author Email: Wei Chaoyang (siomwei@siom.ac.cn), Cao Zhen (caozhen@siom.ac.cn)