Chinese Journal of Ship Research, Volume. 18, Issue 3, 222(2023)

Hybrid deep learning-based online identification method for key parameters of gas turbine dynamic process

Shoutai SUN1, Yali XUE2, Mingchun WANG1, and Li SUN1
Author Affiliations
  • 1Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210018, China
  • 2State Key Laboratory of Electric Power Systems, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
  • show less
    Figures & Tables(11)
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    • Table 1. Nomenclature and meaning of subscripts for gas turbine model

      View table
      View in Article

      Table 1. Nomenclature and meaning of subscripts for gas turbine model

      符号含义及单位下标含义
      P压力/kPa0标称值
      V室容积/m31压气机进口
      T温度/K2燃烧室进口
      R气体常数/(J·kg−1·K−1)3透平进口
      $ \pi $压比4透平出口
      $ \sigma $总压保持系数c压气机
      L扭矩/(N·m)t透平
      I轴惯性/(kg·m2)v定容
      $ \gamma $绝热指数f燃料
      C比热容/(kJ·kg−1·K−1)I进气管
      n转速/(r·min−1)N喷嘴,管口
      $ \rho $密度/(kg·m−3)p定压
      $ \eta $效率/%comb燃烧室
      v流量/(kg·s−1)电力矩
      $Q$燃料热值/(J·kg−1)l低位
    • Table 2. Gas turbine specifications

      View table
      View in Article

      Table 2. Gas turbine specifications

      参数数值
      额定功率/kW100
      额定转速/(r·min−115000
    • Table 3. Partial parameters of gas turbine model

      View table
      View in Article

      Table 3. Partial parameters of gas turbine model

      参数数值参数数值参数数值
      ${\eta _{\rm{t}}}$/%0.85677$ {T_0} $/K288.15$ {P_0} $/kPa101.325
      ${\sigma _{\rm{I}}}$0.98${\eta _{\rm{c}}}$/%0.675${C_{\rm{p} } }$/(kJ·kg−1·K−1)1004
      ${C_{\rm{v} } }$/(kJ·kg−1·K−1)717${\sigma _{\rm{N}}}$0.96I/(kg·m2)30
      $ \gamma $1.4R/(J·kg−1·K−1)287$Q_{\rm{l} }$/(J·kg−1)$4.28 \times {10^7}$
      ${\sigma _{{\rm{comb}}} }$0.95
    • Table 4. Error analysis of LSTM- and LSTM-GPR-based identification results

      View table
      View in Article

      Table 4. Error analysis of LSTM- and LSTM-GPR-based identification results

      动态运行参数整体平均误差/%收敛后误差/%真实值在辨识结果95%置信区间内的比例/%
      LSTMLSTM-GPRLSTMLSTM-GPRLSTM-GPR
      燃料的低位热值$Q_{\rm{l} }$1.0600.0701.8300.00285.6
      压气机效率${\eta _{\rm{c}}}$1.0200.8721.2700.42899.0
      电力矩${L_{\rm{e}}}$14.9101.53011.4800.12091.2
    Tools

    Get Citation

    Copy Citation Text

    Shoutai SUN, Yali XUE, Mingchun WANG, Li SUN. Hybrid deep learning-based online identification method for key parameters of gas turbine dynamic process[J]. Chinese Journal of Ship Research, 2023, 18(3): 222

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Marine Machinery, Electrical Equipment and Automation

    Received: May. 18, 2022

    Accepted: --

    Published Online: Mar. 20, 2025

    The Author Email:

    DOI:10.19693/j.issn.1673-3185.02914

    Topics