Chinese Journal of Ship Research, Volume. 18, Issue 3, 222(2023)

Hybrid deep learning-based online identification method for key parameters of gas turbine dynamic process

Shoutai SUN1, Yali XUE2, Mingchun WANG1, and Li SUN1
Author Affiliations
  • 1Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210018, China
  • 2State Key Laboratory of Electric Power Systems, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
  • show less

    Objective

    In order to overcome the influence of the nonlinear time-varying characteristics of gas turbines on dynamic control and performance monitoring, this paper combines the time series memory and nonlinear relation expression ability of a long short-term memory neural network (LSTM) with the interval probability estimation ability of Gaussian process regression (GPR) to propose an online parameter identification algorithm for the key dynamic parameters of gas turbines based on an LSTM and GPR-based hybrid deep learning model (LSTM-GPR).

    Methods

    First, the dynamic mechanism model of a gas turbine is established, and a large amount of training data is generated by taking fuel calorific value, compressor efficiency and load power moment as the parameters to be identified. Next, the parameter identification network model of LSTM-GPR is constructed, and the training data is input for network training and weight coefficient learning. Finally, the trained LSTM-GPR hybrid deep learning model is used to identify the dynamic operating parameters of the gas turbine model online, and the identification results are analyzed to verify the effectiveness of the proposed algorithm.

    Results

    The simulation results show that the online identification results of the proposed LSTM-GPR hybrid model algorithm are accurate, with a recognition error of less than 1% and good real-time performance. Compared with the LSTM single model, the proposed algorithm can obtain a better mean estimation effect and provide a reliable confidence interval range.

    Conclusions

    The LSTM-GPR hybrid algorithm can be effectively applied to the online parameter identification of a gas turbine model, laying a foundation for its further application to the dynamic operation parameter identification of practical units.

    Tools

    Get Citation

    Copy Citation Text

    Shoutai SUN, Yali XUE, Mingchun WANG, Li SUN. Hybrid deep learning-based online identification method for key parameters of gas turbine dynamic process[J]. Chinese Journal of Ship Research, 2023, 18(3): 222

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Marine Machinery, Electrical Equipment and Automation

    Received: May. 18, 2022

    Accepted: --

    Published Online: Mar. 20, 2025

    The Author Email:

    DOI:10.19693/j.issn.1673-3185.02914

    Topics