Chinese Journal of Ship Research, Volume. 18, Issue 3, 222(2023)
Hybrid deep learning-based online identification method for key parameters of gas turbine dynamic process
[1] [1] KURZKE J, HALLIWELL I. Propulsion power: an explation of gas turbine perfmance modeling[M]. Cham, Switzerl: Springer International Publishing, 2018.
[3] RIGO-MARIANI R, ZHANG C, ROMAGNOLI A et al. A combined cycle gas turbine model for heat and power dispatch subject to grid constraints[J]. IEEE Transactions on Sustainable Energy, 11, 448-456(2019).
[5] [5] KULIKOV G G, THOMPSON H A. Dynamic modelling of gas turbines: identification, simulation, condition moniting optimal control[M]. [S.1.] : Springer Science & Business Media, 2004.
[8] [8] YOUSEFI I, YARI M, SHOEHDELI M A. Modeling, identification control of a heavy duty industrial gas turbine[C]2013 IEEE International Conference on Mechatronics Automation. Takamatsu, Japan: IEEE, 2013: 611615.
[12] SHALAN H E, HASSAN M A M, BAHGAT A B G. Parameter estimation and dynamic simulation of gas turbine model in combined cycle power plants based on actual operational data[J]. Journal of American Science, 7, 303-310(2011).
[14] [14] MAZAHERI A, MANSOURI M, SHOEDELI M A. Parameter estimation of HammersteinWiener ARMAX systems using unscented Kalman filter[C]2014 Second RSIISM International Conference on Robotics Mechatronics (ICRoM). Tehran, Iran: IEEE, 2014: 298303.
[18] [18] ZHANG S, LIU S, WEI F, et al. Parameter identification of hypersonic vehicle based on LSTM algithm[C]The 40th Chinese Control Conference (CCC). Shanghai, China: IEEE, 2021: 1230–1235.
[20] SHENG H, XIAO J, WANG P. Lithium iron phosphate battery electric vehicle state-of-charge estimation based on evolutionary Gaussian mixture regression[J]. IEEE Transactions on Industrial Electronics, 64, 544-551(2016).
[21] [21] CHEN H, ZENG Y, HUANG J, et al. Deep neural wk Gaussian process regression method f endtoend driving behavi learning[C]The 3rd International Conference on Mechatronics, Robotics Automation (ICMRA). Hangzhou, China: IEEE, 2020: 64–73.
[22] WANG Y, FENG B, HUA Q S et al. Short-term solar power forecasting: a combined long short-term memory and Gaussian process regression method[J]. Sustainability, 13, 3665(2021).
[23] [23] DAILY J W. Statistical thermodynamics: an engineering approach[M]. [S.1.]: Cambridge University Press, 2018.
[25] [25] RAZAK A M Y. Industrial gas turbines: perfmance operability [M]. [S.1.] Elsevier Publishing House, 2007.
[26] [26] COHEN H, ROGERS G F C, SARAVANAMUTTOO H I H. Gas turbine they [J]. Engl: Pearson Education Ltd. , 2009.
[32] [32] WANG Y. A new concept using LSTM neural wks f dynamic system identification[C]2017 American control conference (ACC). Seattle, WA: IEEE, 2017: 5324–5329.
[34] [34] MARIN G E, MENDELEEV D I, AKHMETSHIN A R. Analysis of changes in the thermophysical parameters of the gas turbine unit wking fluid depending on the fuel gas composition[C]2019 International MultiConference on Industrial Engineering Modern Technologies (FarEastCon). Vladivostok: IEEE, 2019: 1–4.
Get Citation
Copy Citation Text
Shoutai SUN, Yali XUE, Mingchun WANG, Li SUN. Hybrid deep learning-based online identification method for key parameters of gas turbine dynamic process[J]. Chinese Journal of Ship Research, 2023, 18(3): 222
Category: Marine Machinery, Electrical Equipment and Automation
Received: May. 18, 2022
Accepted: --
Published Online: Mar. 20, 2025
The Author Email: