Acta Optica Sinica, Volume. 41, Issue 22, 2228002(2021)
A SR-Context Loop-Closure Detection Algorithm of Lidar Point Clouds
Fig. 6. MF-RANSAC registration diagram. (a) m-5 frame; (b) m frame; (c)(d) optimal matching results of multiple feature point using static obstacle and dynamic obstacle
Fig. 10. Real vehicle dataset. (a) Collection platform; (b) satellite map of the experimental section
Fig. 11. Precision-recall curve under KITTI dataset. (a) KITTI 00; (b) KITTI 02; (c) KITTI 05; (d) KITTI 08
Fig. 13. Error comparison chart of each algorithm. (a) Distance error; (b) yaw error
Fig. 14. Leaving scene M1. (a) Dynamic target tracking result; (b) ScanContext feature map; (c) SR-Context feature map
Fig. 15. Returned scene M2. (a) Dynamic target tracking result; (b) ScanContext feature map; (c) SR-Context feature map
|
|
Get Citation
Copy Citation Text
Jiong Li, Jinju Shao, Rendong Wang, Kai Zhao, Zhen Liang. A SR-Context Loop-Closure Detection Algorithm of Lidar Point Clouds[J]. Acta Optica Sinica, 2021, 41(22): 2228002
Category: Remote Sensing and Sensors
Received: Apr. 1, 2021
Accepted: Jun. 3, 2021
Published Online: Oct. 29, 2021
The Author Email: Shao Jinju (shaojinju@sdut.edu.cn)