Chinese Journal of Lasers, Volume. 49, Issue 22, 2200002(2022)

Research Progress in Ultrafast Laser Processing of Titanium Dioxide Micro/nano Structures and Functional Devices

Ming Qiao1,2, Jianfeng Yan1,2、*, Jiachen Yu1,2, Jiaqun Li1,2, and Liangti Qu3
Author Affiliations
  • 1Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
  • 2State Key Laboratory of Tribology, Beijing 100084, China
  • 3Department of Chemistry, Tsinghua University, Beijing 100084, China
  • show less
    References(73)

    [1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 238, 37-38(1972).

    [2] Liu C, Tang J Y, Chen H M et al. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting[J]. Nano Letters, 13, 2989-2992(2013).

    [3] Chung I, Lee B, He J Q et al. All-solid-state dye-sensitized solar cells with high efficiency[J]. Nature, 485, 486-489(2012).

    [4] Chen X B, Liu L, Yu P Y et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 331, 746-750(2011).

    [5] Chen Q, Guo W, Ke J C R et al. Ultrafast and scalable laser-induced crystallization of titanium dioxide films for planar perovskite solar cells[J]. Solar RRL, 5, 2000562(2021).

    [6] Dubourg G, RadoviAć M. Multifunctional screen-printed TiO2 nanoparticles tuned by laser irradiation for a flexible and scalable UV detector and room-temperature ethanol sensor[J]. ACS Applied Materials & Interfaces, 11, 6257-6266(2019).

    [7] Wang Q, Shen L, Xue T et al. Single-crystalline TiO2(B) nanobelts with unusual large exposed {100} facets and enhanced Li-storage capacity[J]. Advanced Functional Materials, 31, 2002187(2021).

    [8] Mohd-Noor S, Jang H, Baek K et al. Ultrafast humidity-responsive structural colors from disordered nanoporous titania microspheres[J]. Journal of Materials Chemistry A, 7, 10561-10571(2019).

    [9] Wu Y K, Yang W H, Fan Y B et al. TiO2 metasurfaces: from visible planar photonics to photochemistry[J]. Science Advances, 5, eaax0939(2019).

    [10] Wen D D, Cadusch J J, Meng J J et al. Multifunctional dielectric metasurfaces consisting of color holograms encoded into color printed images[J]. Advanced Functional Materials, 30, 1906415(2020).

    [11] Chen W T, Zhu A Y, Sisler J et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures[J]. Nature Communications, 10, 355(2019).

    [12] Jiang L, Wang A D, Li B et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application[J]. Light: Science & Applications, 7, 17134(2018).

    [13] Zhang J, Zhu D Z, Yan J F et al. Strong metal-support interactions induced by an ultrafast laser[J]. Nature Communications, 12, 6665(2021).

    [14] Luo X, Liu W J, Zhang H J et al. Ultrafast laser fabricating of controllable micro-nano dual-scale metallic surface structures and their functionalization[J]. Chinese Journal of Lasers, 48, 1502002(2021).

    [15] Li J J, Liu Y, Qu S L. Research progress on optical fiber functional devices fabricated by femtosecond laser micro-nano processing[J]. Laser & Optoelectronics Progress, 57, 111402(2020).

    [16] Sima F, Sugioka K. Ultrafast laser manufacturing of nanofluidic systems[J]. Nanophotonics, 10, 2389-2406(2021).

    [17] Wang Y, Zhao Y, Qu L T. Laser fabrication of functional micro-supercapacitors[J]. Journal of Energy Chemistry, 59, 642-665(2021).

    [18] Leal J H, Cantu Y, Gonzalez D F et al. Brookite and anatase nanomaterial polymorphs of TiO2 synthesized from TiCl3[J]. Inorganic Chemistry Communications, 84, 28-32(2017).

    [19] Carp O, Huisman C L, Reller A. Photoinduced reactivity of titanium dioxide[J]. Progress in Solid State Chemistry, 32, 33-177(2004).

    [20] Zhang H Z, Banfield J F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2[J]. The Journal of Physical Chemistry B, 104, 3481-3487(2000).

    [21] Mohamad M, Ul Haq B, Ahmed R et al. A density functional study of structural, electronic and optical properties of titanium dioxide: characterization of rutile, anatase and brookite polymorphs[J]. Materials Science in Semiconductor Processing, 31, 405-414(2015).

    [22] Liu Z M, Siegel J, Garcia-Lechuga M et al. Three-dimensional self-organization in nanocomposite layered systems by ultrafast laser pulses[J]. ACS Nano, 11, 5031-5040(2017).

    [23] Li X, Yu J G, Low J et al. Engineering heterogeneous semiconductors for solar water splitting[J]. Journal of Materials Chemistry A, 3, 2485-2534(2015).

    [24] Li R G, Weng Y X, Zhou X et al. Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases[J]. Energy & Environmental Science, 8, 2377-2382(2015).

    [25] Fan L S, Gao X, Lee D et al. Kinetically controlled fabrication of single-crystalline TiO2 nanobrush architectures with high energy {001} facets[J]. Advanced Science, 4, 1700045(2017).

    [26] Liu X G, Dong G J, Li S P et al. Direct observation of charge separation on anatase TiO2 crystals with selectively etched {001} facets[J]. Journal of the American Chemical Society, 138, 2917-2920(2016).

    [27] Xu F Y, Zhu B C, Cheng B et al. 1D/2D TiO2/MoS2 hybrid nanostructures for enhanced photocatalytic CO2 reduction[J]. Advanced Optical Materials, 6, 1800911(2018).

    [28] Zhao L, Li S, Daniel F et al. Drastic enhancement of photoelectrochemical water splitting performance over plasmonic Al@TiO2 heterostructured nanocavity arrays[J]. Nano Energy, 51, 400-407(2018).

    [29] Yu Z R, Liu H B, Zhu M Y et al. Interfacial charge transport in 1D TiO2 based photoelectrodes for photoelectrochemical water splitting[J]. Small, 17, 1903378(2021).

    [30] Ai C Z, Xie P C, Zhang X D et al. Explaining the enhanced photoelectrochemical behavior of highly ordered TiO2 nanotube arrays: anatase/rutile phase junction[J]. ACS Sustainable Chemistry & Engineering, 7, 5274-5282(2019).

    [31] Pan J, Liu G, Lu G Q et al. On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals[J]. Angewandte Chemie International Edition, 50, 2133-2137(2011).

    [32] Low J, Yu J G, Jaroniec M et al. Heterojunction photocatalysts[J]. Advanced Materials, 29, 1601694(2017).

    [33] Zhang X, Liu H W, Huang X Z et al. One-step femtosecond laser patterning of light-trapping structure on dye-sensitized solar cell photoelectrodes[J]. Journal of Materials Chemistry. C, 3, 3336-3341(2015).

    [34] Khorasaninejad M, Chen W T, Devlin R C et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 352, 1190-1194(2016).

    [35] Sun S, Zhou Z X, Zhang C et al. All-dielectric full-color printing with TiO2 metasurfaces[J]. ACS Nano, 11, 4445-4452(2017).

    [36] Hu Y Q, Li L, Wang Y J et al. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface[J]. Nano Letters, 20, 994-1002(2020).

    [37] Wang W H, Qi L M. Light management with patterned micro- and nanostructure arrays for photocatalysis, photovoltaics, and optoelectronic and optical devices[J]. Advanced Functional Materials, 29, 1807275(2019).

    [38] Cai J S, Shen J L, Zhang X N et al. Light-driven sustainable hydrogen production utilizing TiO2 nanostructures: a review[J]. Small Methods, 3, 1800184(2019).

    [39] Gao M M, Zhu L L, Ong W L et al. Structural design of TiO2-based photocatalyst for H2 production and degradation applications[J]. Catalysis Science & Technology, 5, 4703-4726(2015).

    [40] Winkler T, Haahr-Lillevang L, Sarpe C et al. Laser amplification in excited dielectrics[J]. Nature Physics, 14, 74-79(2018).

    [41] Zhu D Z, Yan J F, Liang Z W et al. Laser stripping of Ag shell from Au@Ag nanoparticles[J]. Rare Metals, 40, 3454-3459(2021).

    [42] Yu J C, Jiang L, Yan J F et al. Microprocessing on single protein crystals using femtosecond pulse laser[J]. ACS Biomaterials Science & Engineering, 6, 6445-6452(2020).

    [43] Guo H, Yan J F, Li X et al. Patterned graphene oxide by spatially-shaped femtosecond laser[J]. Chinese Journal of Lasers, 48, 0202018(2021).

    [44] Li J Q, Yan J F, Li X et al. Research advancement on ultrafast laser microprocessing of transparent dielectrics[J]. Chinese Journal of Lasers, 48, 0202019(2021).

    [45] Museur L, Tsibidis G D, Manousaki A et al. Surface structuring of rutile TiO2 (100) and (001) single crystals with femtosecond pulsed laser irradiation[J]. Journal of the Optical Society of America B, 35, 2600-2607(2018).

    [46] Liu Y, Zhu B, Wang L et al. Femtosecond laser direct writing of TiO2 crystalline patterns in glass[J]. Applied Physics B, 93, 613-617(2008).

    [47] Qiao M, Yan J F, Qu L T et al. Femtosecond laser induced phase transformation of TiO2 with exposed reactive facets for improved photoelectrochemistry performance[J]. ACS Applied Materials & Interfaces, 12, 41250-41258(2020).

    [48] Qiao M, Yan J F, Jiang L. Direction controllable nano-patterning of titanium by ultrafast laser for surface coloring and optical encryption[J]. Advanced Optical Materials, 10, 2101673(2022).

    [49] Balling P, Schou J. Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films[J]. Reports on Progress in Physics, 76, 036502(2013).

    [50] Furusawa K, Takahashi K, Cho S H et al. Femtosecond laser micromachining of TiO2 crystal surface for robust optical catalyst[J]. Journal of Applied Physics, 87, 1604-1609(2000).

    [51] Mero M, Liu J, Rudolph W et al. Scaling laws of femtosecond laser pulse induced breakdown in oxide films[J]. Physical Review B, 71, 115109(2005).

    [52] Fourment C, Chimier B, Deneuville F et al. Ultrafast changes in optical properties of SiO2 excited by femtosecond laser at the damage threshold and above[J]. Physical Review B, 98, 155110(2018).

    [53] Qiao M, Yan J F, Gao B. Ablation of TiO2 surface with a double-pulse femtosecond laser[J]. Optics Communications, 441, 49-54(2019).

    [54] Russo P, Liang R, He R X et al. Phase transformation of TiO2 nanoparticles by femtosecond laser ablation in aqueous solutions and deposition on conductive substrates[J]. Nanoscale, 9, 6167-6177(2017).

    [55] Ma H L, Guo G L, Yang J Y et al. Femtosecond laser irradiation-induced phase transformation on titanium dioxide crystal surface[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 264, 61-65(2007).

    [56] Li Z Z, Wang L, Fan H et al. O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment[J]. Light: Science & Applications, 9, 41(2020).

    [57] Qiao M, Wang H M, Lu H J et al. Micro/nano processing of natural silk fibers with near-field enhanced ultrafast laser[J]. Science China Materials, 63, 1300-1309(2020).

    [58] Liang M S, Li X, Jiang L et al. Femtosecond laser mediated fabrication of micro/nanostructured TiO2-x photoelectrodes: hierarchical nanotubes array with oxygen vacancies and their photocatalysis properties[J]. Applied Catalysis B: Environmental, 277, 119231(2020).

    [59] Huang T, Lu J L, Zhang X et al. Femtosecond laser fabrication of anatase TiO2 micro-nanostructures with chemical oxidation and annealing[J]. Scientific Reports, 7, 2089(2017).

    [60] Lu J L, Yang J J, Singh S C et al. Hierarchical micro/nanostructured TiO2/Ag substrates based on femtosecond laser structuring: a facile route for enhanced SERS performance and location predictability[J]. Applied Surface Science, 478, 737-743(2019).

    [61] Zhang B, Liu X F, Qiu J R. Single femtosecond laser beam induced nanogratings in transparent media: mechanisms and applications[J]. Journal of Materiomics, 5, 1-14(2019).

    [62] Saleh A A, Rudenko A, Reynaud S et al. Sub-100 nm 2D nanopatterning on a large scale by ultrafast laser energy regulation[J]. Nanoscale, 12, 6609-6616(2020).

    [63] Liu H G, Lin W X, Lin Z Y et al. Self-organized periodic microholes array formation on aluminum surface via femtosecond laser ablation induced incubation effect[J]. Advanced Functional Materials, 29, 1903576(2019).

    [64] Das S K, Dasari K, Rosenfeld A et al. Extended-area nanostructuring of TiO2 with femtosecond laser pulses at 400 nm using a line focus[J]. Nanotechnology, 21, 155302(2010).

    [65] Bialuschewski D, Hoppius J S, Frohnhoven R et al. Laser-textured metal substrates as photoanodes for enhanced PEC water splitting reactions[J]. Advanced Engineering Materials, 20, 1800167(2018).

    [66] Arul R, Oosterbeek R N, Dong J Z et al. Ultrafast laser patterning and defect generation in titania nanotubes for the enhancement of optical and photocatalytic properties[J]. Proceedings of SPIE, 10093, 100930K(2017).

    [67] Öktem B, Pavlov I, Ilday S et al. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses[J]. Nature Photonics, 7, 897-901(2013).

    [68] Hoppius J S, Bialuschewski D, Mathur S et al. Femtosecond laser crystallization of amorphous titanium oxide thin films[J]. Applied Physics Letters, 113, 071904(2018).

    [69] Yu J C, Yan J F, Jiang L. Crystallization of polymorphic sulfathiazole controlled by femtosecond laser-induced cavitation bubbles[J]. Crystal Growth & Design, 21, 3202-3210(2021).

    [70] Yu J C, Yan J F, Li X et al. Progress in ultrafast laser-induced nucleation and crystal growth[J]. Chinese Journal of Lasers, 48, 0202020(2021).

    [71] Zehetner J, Kasernann S, Vanko G et al. Black titanium dioxide in situ generated on femtosecond laser induced periodic surface structures[C](2018).

    [72] Guo H, Yan J F, Jiang L et al. Conductive writing with high precision by laser-induced point-to-line carbonization strategy for flexible supercapacitors[J]. Advanced Optical Materials, 9, 2170102(2021).

    [73] Huang T, Lu J L, Xiao R S et al. Enhanced photocatalytic properties of hierarchical three-dimensional TiO2 grown on femtosecond laser structured titanium substrate[J]. Applied Surface Science, 403, 584-589(2017).

    Tools

    Get Citation

    Copy Citation Text

    Ming Qiao, Jianfeng Yan, Jiachen Yu, Jiaqun Li, Liangti Qu. Research Progress in Ultrafast Laser Processing of Titanium Dioxide Micro/nano Structures and Functional Devices[J]. Chinese Journal of Lasers, 2022, 49(22): 2200002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: reviews

    Received: Feb. 28, 2022

    Accepted: Apr. 21, 2022

    Published Online: Nov. 9, 2022

    The Author Email: Yan Jianfeng (yanjianfeng@tsinghua.edu.cn)

    DOI:10.3788/CJL202249.2200002

    Topics