Chinese Journal of Lasers, Volume. 49, Issue 22, 2202009(2022)

High-Speed Parallel Two-Photon Laser Direct Writing Lithography System

Hongqing Wang1, Jisen Wen1, Zhenyao Yang1, Mengbo Tang1, Qiuyuan Sun1, Chengpeng Ma1, Ziang Wang2, Lanxin Zhan1, Xiaoyi Zhang1, Chun Cao1, Xiaoming Shen1, Chenliang Ding1、*, and Cuifang Kuang1,2、**
Author Affiliations
  • 1Research Center for Intelligent Chips and Devices, Zhejiang Laboratory, Hangzhou 310023, Zhejiang, China
  • 2State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • show less
    References(34)

    [1] Hahn V, Kiefer P, Frenzel T et al. Rapid assembly of small materials building blocks (voxels) into large functional 3D metamaterials[J]. Advanced Functional Materials, 30, 1907795(2020).

    [2] Malinauskas M, Žukauskas A, Hasegawa S et al. Ultrafast laser processing of materials: from science to industry[J]. Light: Science & Applications, 5, e16133(2016).

    [3] Lin W, Chen D H, Chen S. Emerging micro-additive manufacturing technologies enabled by novel optical methods[J]. Photonics Research, 8, 1827-1842(2020).

    [4] Frenzel T, Kadic M, Wegener M. Three-dimensional mechanical metamaterials with a twist[J]. Science, 358, 1072-1074(2017).

    [5] Aristov A I, Manousidaki M, Danilov A et al. 3D plasmonic crystal metamaterials for ultra-sensitive biosensing[J]. Scientific Reports, 6, 25380(2016).

    [6] Maigyte L, Purlys V, Trull J et al. Flat lensing in the visible frequency range by woodpile photonic crystals[J]. Optics Letters, 38, 2376-2378(2013).

    [7] Wu D, Wu S Z, Xu J et al. Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip[J]. Laser & Photonics Reviews, 8, 458-467(2014).

    [8] Liberale C, Cojoc G, Bragheri F et al. Integrated microfluidic device for single-cell trapping and spectroscopy[J]. Scientific Reports, 3, 1258(2013).

    [9] Gissibl T, Thiele S, Herkommer A et al. Two-photon direct laser writing of ultracompact multi-lens objectives[J]. Nature Photonics, 10, 554-560(2016).

    [10] Dietrich P I, Blaicher M, Reuter I et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration[J]. Nature Photonics, 12, 241-247(2018).

    [11] MaAčiulaitis J, Deveikytė M, Rekštytė S et al. Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography[J]. Biofabrication, 7, 015015(2015).

    [12] Richter B, Hahn V, Bertels S et al. Guiding cell attachment in 3D microscaffolds selectively functionalized with two distinct adhesion proteins[J]. Advanced Materials, 29, 1604342(2017).

    [13] Yang L, El-Tamer A, Hinze U et al. Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator[J]. Optics and Lasers in Engineering, 70, 26-32(2015).

    [14] Yan W S, Cumming B P, Gu M. High-throughput fabrication of micrometer-sized compound parabolic mirror arrays by using parallel laser direct-write processing[J]. Journal of Optics, 17, 075803(2015).

    [15] Vizsnyiczai G, Kelemen L, Ormos P. Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms[J]. Optics Express, 22, 24217-24223(2014).

    [16] Gittard S D, Nguyen A, Obata K et al. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator[J]. Biomedical Optics Express, 2, 3167-3178(2011).

    [17] Obata K, Koch J, Hinze U et al. Multi-focus two-photon polymerization technique based on individually controlled phase modulation[J]. Optics Express, 18, 17193-17200(2010).

    [18] Chu W, Tan Y X, Wang P et al. Centimeter-height 3D printing with femtosecond laser two-photon polymerization[J]. Advanced Materials Technologies, 3, 1700396(2018).

    [19] Ovsianikov A, Deiwick A, van Vlierberghe S et al. Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering[J]. Biomacromolecules, 12, 851-858(2011).

    [20] Haske W, Chen V W, Hales J M et al. 65 nm feature sizes using visible wavelength 3-D multiphoton lithography[J]. Optics Express, 15, 3426-3436(2007).

    [21] Straub M, Gu M. Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization[J]. Optics Letters, 27, 1824-1826(2002).

    [22] Skylar-Scott M A, Liu M C, Wu Y L et al. Guided homing of cells in multi-photon microfabricated bioscaffolds[J]. Advanced Healthcare Materials, 5, 1233-1243(2016).

    [23] Bückmann T, Thiel M, Kadic M et al. An elasto-mechanical unfeelability cloak made of pentamode metamaterials[J]. Nature Communications, 5, 4130(2014).

    [24] Obata K, El-Tamer A, Koch L et al. High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP)[J]. Light: Science & Applications, 2, e116(2013).

    [25] Gottmann J. High speed and high precision fs-laser writing using a scanner with large numerical aperture[J]. Journal of Laser Micro, 4, 192-196(2009).

    [26] Farsari M, Filippidis G, Sambani K et al. Two-photon polymerization of an eosin Y-sensitized acrylate composite[J]. Journal of Photochemistry and Photobiology A: Chemistry, 181, 132-135(2006).

    [27] Pearre B W, Michas C, Tsang J M et al. Fast micron-scale 3D printing with a resonant-scanning two-photon microscope[J]. Additive Manufacturing, 30, 100887(2019).

    [28] di Leonardo R, Ianni F, Ruocco G. Computer generation of optimal holograms for optical trap arrays[J]. Optics Express, 15, 1913-1922(2007).

    [29] Lin H, Jia B H, Gu M. Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication[J]. Optics Letters, 36, 406-408(2011).

    [30] Kim D U, Song H, Song W et al. Two-photon microscopy using an Yb3+-doped fiber laser with variable pulse widths[J]. Optics Express, 20, 12341-12349(2012).

    [31] Kumi G, Yanez C O, Belfield K D et al. High-speed multiphoton absorption polymerization: fabrication of microfluidic channels with arbitrary cross-sections and high aspect ratios[J]. Lab on a Chip, 10, 1057-1060(2010).

    [32] Geng Q, Wang D E, Chen P F et al. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization[J]. Nature Communications, 10, 2179(2019).

    [33] Dong X Z, Zhao Z S, Duan X M. Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing[J]. Applied Physics Letters, 91, 124103(2007).

    [34] Zhou G Z, He M F, Yang Z Y et al. Dual-beam laser direct writing nano-lithography system based on peripheral photoinhibition technology[J]. Chinese Journal of Lasers, 49, 0202001(2022).

    Tools

    Get Citation

    Copy Citation Text

    Hongqing Wang, Jisen Wen, Zhenyao Yang, Mengbo Tang, Qiuyuan Sun, Chengpeng Ma, Ziang Wang, Lanxin Zhan, Xiaoyi Zhang, Chun Cao, Xiaoming Shen, Chenliang Ding, Cuifang Kuang. High-Speed Parallel Two-Photon Laser Direct Writing Lithography System[J]. Chinese Journal of Lasers, 2022, 49(22): 2202009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Jan. 17, 2022

    Accepted: Mar. 9, 2022

    Published Online: Nov. 9, 2022

    The Author Email: Ding Chenliang (dingcl@zhejianglab.com), Kuang Cuifang (cfkuang@zju.edu.cn)

    DOI:10.3788/CJL202249.2202009

    Topics