Chinese Journal of Lasers, Volume. 50, Issue 22, 2210001(2023)

Three‑Dimensional Lane Detection Algorithm of Lidar Based on Adaptive Gating and Dual Pathways

Jie Hu1,2,3, Nan Chen1,2,3, Wencai Xu1,2,3、*, Minjie Chang1,2,3, Boyuan Xu1,2,3, Zhanbin Wang1,2,3, and Qixiang Guo4
Author Affiliations
  • 1Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, Hubei, China
  • 2Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, Hubei, China
  • 3Hubei Research Center for New Energy & Intelligent Connected Vehicle, Wuhan University of Technology,Wuhan 430070, Hubei, China
  • 4Commercial Product R&D Institute, Dongfeng Automobile Co., Ltd., Wuhan 430100, Hubei, China
  • show less
    References(37)

    [1] Zheng T, Huang Y F, Liu Y et al. CLRNet: cross layer refinement network for lane detection[C], 888-897(2022).

    [2] Deng G L, Wu Y F. Double lane line edge detection method based on constraint conditions Hough transform[C], 107-110(2018).

    [3] Liu L Z, Chen X H, Zhu S Y et al. CondLaneNet: a top-to-down lane detection framework based on conditional convolution[C], 3753-3762(2022).

    [4] Lee M, Lee J, Lee D et al. Robust lane detection via expanded self attention[C], 1949-1958(2022).

    [5] Liu R J, Yuan Z J, Liu T et al. End-to-end lane shape prediction with transformers[C], 3693-3701(2021).

    [6] Qian Q S, Hu Y H, Zhao N X et al. Object tracking method based on joint global and local feature descriptor of 3D lidar point cloud[J]. Chinese Optics Letters, 18, 061001(2020).

    [7] Hu J, An Y P, Xu W C et al. 3D object detection based on deep semantic position information fusion of laser point cloud[J]. Chinese Journal of Lasers, 50, 1010003(2023).

    [8] Wang C X, Zhang H R, Yang M et al. Automatic parking based on a bird’s eye view vision system[J]. Advances in Mechanical Engineering, 6, 847406(2014).

    [9] Lindner P, Richter E, Wanielik G et al. Multi-channel lidar processing for lane detection and estimation[C](2009).

    [10] Yang R H, Li Q T, Tan J X et al. Accurate road marking detection from noisy point clouds acquired by low-cost mobile lidar systems[J]. ISPRS International Journal of Geo-Information, 9, 608(2020).

    [11] Ester M, Kriegel H P, Sander J et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C], 226-231(1996).

    [12] Bai M, Mattyus G, Homayounfar N et al. Deep multi-sensor lane detection[C], 3102-3109(2019).

    [13] Martinek P, Pucea G, Rao Q et al. Lidar-based deep neural network for reference lane generation[C], 89-94(2021).

    [14] Paek D H, Kong S H, Wijaya K T. K-Lane: lidar lane dataset and benchmark for urban roads and highways[C], 4449-4458(2022).

    [16] Ku J, Mozifian M, Lee J et al. Joint 3D proposal generation and object detection from view aggregation[C](2019).

    [17] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [20] Lin T Y, Dollár P, Girshick R et al. Feature pyramid networks for object detection[C], 936-944(2017).

    [21] Huang Y K, Wang Q W, Shen T et al. Multi-scale receptive field feature fusion algorithm based on MobileNet[J]. Laser & Optoelectronics Progress, 60, 0410024(2023).

    [22] Xing H J, Wang S, Zheng D Z et al. Dual attention based feature pyramid network[J]. China Communications, 17, 242-252(2020).

    [23] Vaswani A, Shazeer N, Parmar N et al. Attention is all you need[C], 5998-6008(2017).

    [24] Wang L S, Wu Z L, Zhong Y et al. Snapshot spectral compressive imaging reconstruction using convolution and contextual transformer[J]. Photonics Research, 10, 1848-1858(2022).

    [25] Liu Z, Lin Y T, Cao Y et al. Swin transformer: hierarchical vision transformer using shifted windows[C], 9992-10002(2022).

    [26] Lin H Z, Cheng X, Wu X Y et al. CAT: cross attention in vision transformer[C](2022).

    [27] Tang L, Wan L, Wang T T et al. DECANet: image semantic segmentation method based on improved DeepLabv3+[J]. Laser & Optoelectronics Progress, 60, 0410002(2023).

    [28] Liang Z Q, Wang J S, Xiao G et al. FAANet: feature-aligned attention network for real-time multiple object tracking in UAV videos[J]. Chinese Optics Letters, 20, 081101(2022).

    [31] Rao Y, Zhao W, Tang Y et al. HorNet: efficient high-order spatial interactions with recursive gated convolutions[C](2022).

    [32] Wang Q L, Wu B G, Zhu P F et al. ECA-net: efficient channel attention for deep convolutional neural networks[C], 11531-11539(2020).

    [33] Howard A, Sandler M, Chen B et al. Searching for MobileNetV3[C], 1314-1324(2020).

    [34] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C], 7132-7141(2018).

    [37] Woo S, Park J, Lee J Y et al. CBAM: convolutional block attention module[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science, 11211, 3-19(2018).

    Tools

    Get Citation

    Copy Citation Text

    Jie Hu, Nan Chen, Wencai Xu, Minjie Chang, Boyuan Xu, Zhanbin Wang, Qixiang Guo. Three‑Dimensional Lane Detection Algorithm of Lidar Based on Adaptive Gating and Dual Pathways[J]. Chinese Journal of Lasers, 2023, 50(22): 2210001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: remote sensing and sensor

    Received: Jan. 12, 2023

    Accepted: Mar. 15, 2023

    Published Online: Nov. 7, 2023

    The Author Email: Xu Wencai (wencaixu_val@163.com)

    DOI:10.3788/CJL230456

    Topics