Chinese Journal of Lasers, Volume. 50, Issue 22, 2210001(2023)
Three‑Dimensional Lane Detection Algorithm of Lidar Based on Adaptive Gating and Dual Pathways
[1] Zheng T, Huang Y F, Liu Y et al. CLRNet: cross layer refinement network for lane detection[C], 888-897(2022).
[2] Deng G L, Wu Y F. Double lane line edge detection method based on constraint conditions Hough transform[C], 107-110(2018).
[3] Liu L Z, Chen X H, Zhu S Y et al. CondLaneNet: a top-to-down lane detection framework based on conditional convolution[C], 3753-3762(2022).
[4] Lee M, Lee J, Lee D et al. Robust lane detection via expanded self attention[C], 1949-1958(2022).
[5] Liu R J, Yuan Z J, Liu T et al. End-to-end lane shape prediction with transformers[C], 3693-3701(2021).
[6] Qian Q S, Hu Y H, Zhao N X et al. Object tracking method based on joint global and local feature descriptor of 3D lidar point cloud[J]. Chinese Optics Letters, 18, 061001(2020).
[7] Hu J, An Y P, Xu W C et al. 3D object detection based on deep semantic position information fusion of laser point cloud[J]. Chinese Journal of Lasers, 50, 1010003(2023).
[8] Wang C X, Zhang H R, Yang M et al. Automatic parking based on a bird’s eye view vision system[J]. Advances in Mechanical Engineering, 6, 847406(2014).
[9] Lindner P, Richter E, Wanielik G et al. Multi-channel lidar processing for lane detection and estimation[C](2009).
[10] Yang R H, Li Q T, Tan J X et al. Accurate road marking detection from noisy point clouds acquired by low-cost mobile lidar systems[J]. ISPRS International Journal of Geo-Information, 9, 608(2020).
[11] Ester M, Kriegel H P, Sander J et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C], 226-231(1996).
[12] Bai M, Mattyus G, Homayounfar N et al. Deep multi-sensor lane detection[C], 3102-3109(2019).
[13] Martinek P, Pucea G, Rao Q et al. Lidar-based deep neural network for reference lane generation[C], 89-94(2021).
[14] Paek D H, Kong S H, Wijaya K T. K-Lane: lidar lane dataset and benchmark for urban roads and highways[C], 4449-4458(2022).
[16] Ku J, Mozifian M, Lee J et al. Joint 3D proposal generation and object detection from view aggregation[C](2019).
[17] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).
[19] Yao T, Li Y H, Pan Y W et al. Dual vision transformer[EB/OL]. https:∥arxiv. org/abs/2207. 04976
[20] Lin T Y, Dollár P, Girshick R et al. Feature pyramid networks for object detection[C], 936-944(2017).
[21] Huang Y K, Wang Q W, Shen T et al. Multi-scale receptive field feature fusion algorithm based on MobileNet[J]. Laser & Optoelectronics Progress, 60, 0410024(2023).
[22] Xing H J, Wang S, Zheng D Z et al. Dual attention based feature pyramid network[J]. China Communications, 17, 242-252(2020).
[23] Vaswani A, Shazeer N, Parmar N et al. Attention is all you need[C], 5998-6008(2017).
[24] Wang L S, Wu Z L, Zhong Y et al. Snapshot spectral compressive imaging reconstruction using convolution and contextual transformer[J]. Photonics Research, 10, 1848-1858(2022).
[25] Liu Z, Lin Y T, Cao Y et al. Swin transformer: hierarchical vision transformer using shifted windows[C], 9992-10002(2022).
[26] Lin H Z, Cheng X, Wu X Y et al. CAT: cross attention in vision transformer[C](2022).
[27] Tang L, Wan L, Wang T T et al. DECANet: image semantic segmentation method based on improved DeepLabv3+[J]. Laser & Optoelectronics Progress, 60, 0410002(2023).
[28] Liang Z Q, Wang J S, Xiao G et al. FAANet: feature-aligned attention network for real-time multiple object tracking in UAV videos[J]. Chinese Optics Letters, 20, 081101(2022).
[31] Rao Y, Zhao W, Tang Y et al. HorNet: efficient high-order spatial interactions with recursive gated convolutions[C](2022).
[32] Wang Q L, Wu B G, Zhu P F et al. ECA-net: efficient channel attention for deep convolutional neural networks[C], 11531-11539(2020).
[33] Howard A, Sandler M, Chen B et al. Searching for MobileNetV3[C], 1314-1324(2020).
[34] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C], 7132-7141(2018).
[37] Woo S, Park J, Lee J Y et al. CBAM: convolutional block attention module[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science, 11211, 3-19(2018).
Get Citation
Copy Citation Text
Jie Hu, Nan Chen, Wencai Xu, Minjie Chang, Boyuan Xu, Zhanbin Wang, Qixiang Guo. Three‑Dimensional Lane Detection Algorithm of Lidar Based on Adaptive Gating and Dual Pathways[J]. Chinese Journal of Lasers, 2023, 50(22): 2210001
Category: remote sensing and sensor
Received: Jan. 12, 2023
Accepted: Mar. 15, 2023
Published Online: Nov. 7, 2023
The Author Email: Xu Wencai (wencaixu_val@163.com)