Chinese Journal of Lasers, Volume. 50, Issue 22, 2210001(2023)

Three‑Dimensional Lane Detection Algorithm of Lidar Based on Adaptive Gating and Dual Pathways

Jie Hu1,2,3, Nan Chen1,2,3, Wencai Xu1,2,3、*, Minjie Chang1,2,3, Boyuan Xu1,2,3, Zhanbin Wang1,2,3, and Qixiang Guo4
Author Affiliations
  • 1Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, Hubei, China
  • 2Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, Hubei, China
  • 3Hubei Research Center for New Energy & Intelligent Connected Vehicle, Wuhan University of Technology,Wuhan 430070, Hubei, China
  • 4Commercial Product R&D Institute, Dongfeng Automobile Co., Ltd., Wuhan 430100, Hubei, China
  • show less
    Figures & Tables(17)
    Overall architecture of LLDN-AGDP
    Schematic diagram of BEV encoder. (a) Schematic diagram of GFPN structure; (b) transformer encoder
    Schematic diagram of dual-pathway multi-stage global feature extraction network framework
    Schematic diagram of E-MBCONV module
    Dual-pathway module and fusion module. (a) Dual-pathway module; (b) fusion module
    Schematic diagram of second-order spatial interaction of AMOG module
    Detection head of LLDN-AGDP
    Dataset distribution
    Visualization of detection results on K-Lane test set. (a) Daytime; (b) night; (c) urban; (d) highway; (e) curve; (f) no occlusion; (g) occlusion Occ-4‒6
    Visualization results of attention scores of each network. (a) LLDN-AGDP; (b) LLDN-GFC; (c) LLDN-Swin; (d) RLLDN-LC
    Hardware deployment of test platform
    Detection results of local data set
    • Table 1. Comparison of confidence F1 scores of different algorithms on K-Lane test set

      View table

      Table 1. Comparison of confidence F1 scores of different algorithms on K-Lane test set

      Method

      Overall /

      %

      Daytime /

      %

      Night /

      %

      Urban /

      %

      Highway /

      %

      Curve /

      %

      No

      occlusion /%

      Occ-4‒6 /

      %

      Frame rate /(frame·s-1
      RNF-S1373.272.674.073.173.370.574.963.513.1
      RNF-C1378.077.678.577.778.376.079.669.313.0
      RNF-D1372.171.373.071.972.369.674.061.913.2
      LLDN-GFC1482.182.282.081.782.578.082.975.911.6
      RLLDN-LC1582.782.582.981.684.076.183.479.116.4
      LLDN-Swin2582.582.682.581.683.775.783.077.410.7
      LLDN-CAT2682.782.782.681.783.977.383.577.711.2
      LLDN-AGDP84.784.684.784.285.378.985.279.411.8
    • Table 2. Comparison of classification F1 scores of different algorithms on K-Lane test set

      View table

      Table 2. Comparison of classification F1 scores of different algorithms on K-Lane test set

      Method

      Overall /

      %

      Daytime/

      %

      Night /

      %

      Urban /

      %

      Highway /

      %

      Curve /

      %

      No

      occlusion /%

      Occ-4‒6 /

      %

      Frame rate /(frame·s-1
      RNF-S1370.570.171.070.470.668.172.359.013.1
      RNF-C1375.375.175.574.876.073.177.065.313.0
      RNF-D1368.668.369.468.769.066.570.757.613.2
      LLDN-GFC1481.181.480.780.681.776.781.975.511.6
      LLDN-Swin2581.481.181.879.582.872.381.777.310.7
      LLDN-CAT2681.581.581.380.782.776.182.377.111.2
      LLDN-AGDP83.683.883.583.084.378.184.379.111.8
    • Table 3. Ablation experiment results of LLDN-AGDP

      View table

      Table 3. Ablation experiment results of LLDN-AGDP

      MethodDPSGFPNE-MBCONVAMOGConfidence of F1 /%
      (a)82.1
      (b)83.0
      (c)83.5
      (d)84.1
      (e)84.7
    • Table 4. Ablation experiment results of DPS

      View table

      Table 4. Ablation experiment results of DPS

      Method

      N1=3,N2=3

      (baseline)

      N1=1,N2=3(test 1)N1=6,N2=3(test 2)N1=3,N2=0(test 3)N1=6,N2=0(test 4)N1=9,N2=0(test 5)
      Confidence of F1 /%84.784.484.383.584.183.3
    • Table 5. Ablation experiment results of E-MBCONV, AMOG and GFPN

      View table

      Table 5. Ablation experiment results of E-MBCONV, AMOG and GFPN

      MethodE-MBCONVAMOGGFPN
      BaselineMBCONV33Removing ECABaselineRemoving depthwise convolutionBaselineFPN20
      Confidence of F1 /%84.784.784.484.784.084.784.2
    Tools

    Get Citation

    Copy Citation Text

    Jie Hu, Nan Chen, Wencai Xu, Minjie Chang, Boyuan Xu, Zhanbin Wang, Qixiang Guo. Three‑Dimensional Lane Detection Algorithm of Lidar Based on Adaptive Gating and Dual Pathways[J]. Chinese Journal of Lasers, 2023, 50(22): 2210001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: remote sensing and sensor

    Received: Jan. 12, 2023

    Accepted: Mar. 15, 2023

    Published Online: Nov. 7, 2023

    The Author Email: Xu Wencai (wencaixu_val@163.com)

    DOI:10.3788/CJL230456

    Topics