Chinese Journal of Lasers, Volume. 47, Issue 4, 401005(2020)
ICP Etching Process of GaAs/AlGaAs for Vertical-Cavity Surface-Emitting Lasers
[1] Gatto A, Boletti A, Boffi P et al. Adjustable-chirp VCSEL-to-VCSEL injection locking for 10-Gb/s transmission at 1.55 μm[J]. Optics Express, 17, 21748-21753(2009).
[2] Ji C, Wang J, Söderstrom D et al. High volume 850 nm oxide VCSEL development for high bandwidth optical data link applications[J]. Proceedings of SPIE, 7229, 722904(2009).
[3] Geib K M, Serkland D K, Keeler G A et al. Photonics technology development for optical fuzing[J]. Proceedings of SPIE, 5871, 58710J(2005).
[4] Shchegrov A V, Watson J P, Lee D et al. Development of compact blue-green lasers for projection display based on Novalux extended-cavity surface-emitting laser technology[J]. Proceedings of SPIE, 5737, 113-119(2014).
[5] Al-Samaneh A, Renz S, Strodl A et al. Polarization-stable single-mode VCSELs for Cs-based MEMS atomic clock applications[J]. Proceedings of SPIE, 7720, 772006(2010).
[6] Kong T, Su R G, Zhang B B et al. CMOS-compatible, label-free silicon-nanowire biosensors to detect cardiac troponin I for acute myocardial infarction diagnosis[J]. Biosensors and Bioelectronics, 34, 267-272(2012).
[7] Spector S J, Geis M W, Zhou G R et al. CMOS-compatible dual-output silicon modulator for analog signal processing[J]. Optics Express, 16, 11027-11031(2008).
[8] Wang Y Y, Huang R, Liu X Y et al. Development of microelectronic technology in the 21st Century facing industrial demands(part 1)[J]. Physics, 33, 403-417(2004).
[9] Shi G Z, Guan B L, Li S et al. Power dissipation in oxide-confined 980-nm vertical-cavity surface-emitting lasers[J]. Chinese Physics B, 22, 014206(2013).
[13] Kao C C, Huang H, Tsai J et al. Study of dry etching for GaN and InGaN-based laser structure using inductively coupled plasma reactive ion etching[J]. Materials Science and Engineering: B, 107, 283-288(2004).
[14] Cho H, Vartuli C B, Abernathy C R et al. Cl2-based dry etching of the AIGaInN system in inductively coupled plasmas[J]. Symposium E: Power Semiconductor Materials & Devices, 483, 327(1997).
[15] Wang X C, Su B F, Jia W et al. Isolated grooves etching on 3J GaAs solar cell by ICP[J]. Journal of Guizhou University(Natural Science), 31, 52-56(2014).
[16] Lee Y H, Sung Y J, Yeom G Y et al. Magnetized inductively coupled plasma etching of GaN in Cl2/BCl3 plasma[J]. Journal of Vacuum Science & Technology A, 18, 1390-1394(2000).
[17] Smith S A, Wolden C A, Bremser M D et al. High rate and selective etching of GaN, AlGaN, and AlN using an inductively coupled plasma[J]. Applied Physics Letters, 71, 3631-3633(1997).
[18] Khan F, Zhou L, Kumar V et al. High rate etching of AlN using BCl3/Cl2/Ar inductively coupled plasma[J]. Materials Science and Engineering: B, 95, 51-54(2002).
[19] Ding R X, Yang Y T, Han R. Microtrenching effect of SiC ICP etching in SF6/O2 plasma[J]. Journal of Semiconductors, 30, 016001(2009).
Get Citation
Copy Citation Text
Wang Yu, Zhou Yanping, Li Maolin, Zuo Chao, Yang Bingjun. ICP Etching Process of GaAs/AlGaAs for Vertical-Cavity Surface-Emitting Lasers[J]. Chinese Journal of Lasers, 2020, 47(4): 401005
Category: laser devices and laser physics
Received: Oct. 14, 2019
Accepted: --
Published Online: Apr. 8, 2020
The Author Email: Yanping Zhou (yanping_zhou@ulvac.com)