Acta Optica Sinica, Volume. 41, Issue 4, 0415001(2021)
RGB-D Visual Odometry Combined with Points and Lines
[4] Triggs B. McLauchlan P F, Hartley R I, et al. Bundle adjustment:a modern synthesis[M]. Heidelberg: Springer, 298-372(2000).
[5] Klein G, Murray D. Parallel tracking and mapping for small AR workspaces[C]∥2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, November 13-16, 2007, Nara, Japan., 225-234(2007).
[6] Mur-Artal R. Montiel J M M, Tardós J D. ORB-SLAM: a versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 31, 1147-1163(2015).
[8] Steinbrücker F, Sturm J, Cremers D. Real-time visual odometry from dense RGB-D images[C]∥2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), November 6-13, 2011, Barcelona, Spain., 719-722(2011).
[9] Engel J, Koltun V, Cremers D. Direct sparse odometry[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 611-625(2018).
[10] Engel J, Schöps T, Cremers D[M]. LSD-SLAM: large-scale direct monocular SLAM, 834-849(2014).
[11] Kerl C, Sturm J, Cremers D. Dense visual SLAM for RGB-D cameras[C]∥2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, November 3-7, 2013, Tokyo, Japan., 2100-2106(2013).
[12] Pumarola A, Vakhitov A, Agudo A et al. PL-, 4503-4508(2017).
[13] Gomez-Ojeda R, Briales J, Gonzalez-Jimenez J. PL-, 4211-4216(2016).
[14] Kim P, Coltin B, Kim H J[M]. Linear RGB-D SLAM for planar environments, 350-366(2018).
[16] Christensen K. -06-11)[2020-09-07]. https:∥arxiv., org/abs/1906, 04838(2019).
[17] Schenk F, Fraundorfer F. Robust edge-based visual odometry using machine-learned edges[C]∥2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 24-28, 2017, Vancouver, BC, Canada., 1297-1304(2017).
[19] [19] Lu XH, YaoJ, LiK, et al.CannyLines: a parameter-free line segment detector[C]∥2015 IEEE International Conference on Image Processing (ICIP), September 27-30, 2015, Quebec City, QC, Canada. New York: IEEE Press, 2015: 507- 511.
[23] Zhang Z X, Li M, Huang K Q et al. 3D model based vehicle localization by optimizing local gradient based fitness evaluation[C]∥2008 19th International Conference on Pattern Recognition, December 8-11, 2008, Tampa, FL, USA., 1-4(2008).
[24] Handa A, Whelan T. McDonald J, et al. A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM[C]∥2014 IEEE International Conference on Robotics and Automation (ICRA), May 31 - June 7, 2014, Hong Kong, China., 1524-1531(2014).
[25] Sturm J, Engelhard N, Endres F et al. A benchmark for the evaluation of RGB-D SLAM systems[C]∥2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 7-12, 2012, Vilamoura, Portugal., 573-580(2012).
[26] [26] WasenmüllerO, MeyerM, StrickerD. CoRBS: comprehensive RGB-D benchmark for SLAM using Kinect v2[C]∥2016 IEEE Winter Conference on Applications of Computer Vision (WACV), March 7-10, 2016, Lake Placid, NY, USA. New York: IEEE Press, 2016: 1- 7.
[27] Kim P, Coltin B, Kim H J. Low-drift visual odometry in structured environments by decoupling rotational and translational motion[C]∥2018 IEEE International Conference on Robotics and Automation (ICRA), May 21-25, 2018, Brisbane, QLD, Australia., 7247-7253(2018).
[28] Li S J, Ren B, Liu Y et al. Direct line guidance odometry[C]∥2018 IEEE International Conference on Robotics and Automation (ICRA), May 21-25, 2018, Brisbane, QLD, Australia., 5137-5143(2018).
Get Citation
Copy Citation Text
Junxin Lu, Zhijun Fang, Jieyu Chen, Yongbin Gao. RGB-D Visual Odometry Combined with Points and Lines[J]. Acta Optica Sinica, 2021, 41(4): 0415001
Category: Machine Vision
Received: Sep. 7, 2020
Accepted: Oct. 10, 2020
Published Online: Feb. 26, 2021
The Author Email: Zhijun Fang (zjfang@sues.edu.cn)