Acta Optica Sinica, Volume. 41, Issue 4, 0415001(2021)

RGB-D Visual Odometry Combined with Points and Lines

Junxin Lu, Zhijun Fang*, Jieyu Chen, and Yongbin Gao
Author Affiliations
  • College of Electrical and Electronic Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
  • show less
    Figures & Tables(16)
    Framework of system
    Results of each line extraction algorithm in scene of low-texture. (a) Hough transform algorithm; (b) EDLines algorithm; (c) LSD algorithm; (d) CannyLines algorithm
    Local neighborhood of line midpoint
    Dataset of ICL-NUIM
    Results of proposed algorithm on ICL-NUIM dataset. (a) Input images; (b) point and line features extracted from the images; (c) estimated camera trajectories
    Some challenging scenarios of visual odometry. (a) White walls; (b) ceilings; (c) corridors; (d) scenes of illumination change
    Estimated camera trajectories of proposed algorithm on TUM dataset. (a) fr1/desk; (b) fr2/desk; (c) fr3/long_office; (d) fr3/cabinet; (e) fr3/str_ntex_near; (f) fr3/str_ntex_far
    Intuitive diagram of relative pose error of proposed algorithm on TUM dataset. (a) fr1/desk; (b) fr3/long_office; (c) fr3/str_ntex_far
    Estimated camera trajectories of proposed algorithm on CoRBS dataset. (a) D1 sequence; (b) E1 sequence; (c) E4 sequence; (d) H1 sequence
    Location accuracy and convergence time of proposed algorithm using I and ξc-1,kn initial ξck0. (a) Comparison of ATE RMSE; (b) comparison of convergence time
    Location accuracy ATE RMSE and convergence time of our algorithm using ξc-1,kn and ξc-1,kn􀱋ξc-2,c-1 initial ξck0. (a) Comparison of ATE RMSE; (b) comparison of convergence time
    • Table 1. [in Chinese]

      View table

      Table 1. [in Chinese]

      Sequencelr-kt0lr-kt1lr-kt2lr-kt3of-kt0of-kt1of-kt2of-kt3
      ORB-SLAM2(VO)0.09430.06120.06690.17770.15770.06690.09090.0710
      REVO0.14860.05010.02560.05090.05411.91240.03180.0314
      LPVO0.01500.03900.03400.05200.06100.05200.03900.0300
      Proposed0.00940.01100.01620.02120.01810.01060.01710.0123
    • Table 2. [in Chinese]

      View table

      Table 2. [in Chinese]

      SequenceREVOPL-SVODSOORB-SLAM2(VO)DLGOProposed
      fr1/rpy0.0373--0.0368-0.0154
      fr1/xyz0.02360.10890.08820.01730.06740.0317
      fr2/xyz0.05810.02090.07720.00380.08080.0088
      fr2/desk0.17470.06931.8100.02891.64000.0067
      fr3/long_office0.01950.16601.5120.01981.46400.0186
      Average(rich-texture)0.06260.09130.87180.02130.81310.0142
      fr3/str_ntex_near0.0167--×-0.0212
      fr3/str_ntex_far0.0169-1.052×0.94600.0176
      fr3/cabinet0.0703-1.5600.07311.57000.0087
      fr3/nstr_ntex_far0.1445-0.876×0.74000.0442
      Average(texture-less)0.0621-1.16270.07311.08530.0229
    • Table 3. [in Chinese]

      View table

      Table 3. [in Chinese]

      SequenceREVOPL-SVODSOORB-SLAM2(VO)DLGOProposed
      fr1/rpy0.0504--0.0289-0.0132
      fr1/xyz0.05620.01670.06900.01070.05380.0222
      fr2/xyz0.22190.05030.06190.00700.06530.0073
      fr2/desk1.00980.06451.65000.41251.33000.0054
      fr3/long_office0.49800.16371.18000.44031.16800.0372
      Average(rich-texture)0.36730.07380.74020.17990.65430.0171
      fr3/str_ntex_near0.0134--×-0.0127
      fr3/str_ntex_far0.0110-0.7900×0.86500.0103
      fr3/cabinet0.2982-1.0800×1.05000.0061
      fr3/nstr_ntex_far0.2607-0.6770×0.50400.0304
      Average(texture-less)0.1458-0.8490×0.80630.0149
    • Table 4. Comparison of ATE RMSE and RPE RMSE of different algorithms on CoRBS dataset

      View table

      Table 4. Comparison of ATE RMSE and RPE RMSE of different algorithms on CoRBS dataset

      ItemSequenceD1E1E4H1Average
      DVO0.05960.03350.03350.06160.0470
      RPE RMSE /(m·s-1)ORB-SLAM2(VO)0.02030.02880.02910.02330.0254
      REVO0.01320.04770.02600.01160.0246
      Proposed0.00970.01650.00510.00770.0096
      ORB-SLAM2(VO)0.03870.04610.05280.07150.0523
      ATE RMSE /(m·s-1)REVO0.02340.13140.03460.03220.0554
      Proposed0.01780.03370.02530.02690.0184
    • Table 5. [in Chinese]

      View table

      Table 5. [in Chinese]

      OperaionORB-SLAM2(VO)REVOProposed
      Features extraction11.5412.6331.25
      Initial pose estimation3.723.373.85
      Tracking15.0810.4511.43
      Total30.3426.4546.53
    Tools

    Get Citation

    Copy Citation Text

    Junxin Lu, Zhijun Fang, Jieyu Chen, Yongbin Gao. RGB-D Visual Odometry Combined with Points and Lines[J]. Acta Optica Sinica, 2021, 41(4): 0415001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Sep. 7, 2020

    Accepted: Oct. 10, 2020

    Published Online: Feb. 26, 2021

    The Author Email: Zhijun Fang (zjfang@sues.edu.cn)

    DOI:10.3788/AOS202141.0415001

    Topics