Chinese Journal of Lasers, Volume. 51, Issue 8, 0803101(2024)

Dynamic Damage Process of HfO2/SiO2 Anti‑Reflection Coatings Under 1064 nm Nanosecond Laser Irradiation

Chengjiang Xiang1,2, Xiaofeng Liu2,3、*, Chunxian Tao1, Dawei Li2,3, Yuan’an Zhao2,3,4、**, Ziyuan Xu2, Shuai Kun2, He Gong1,2, Jian Sun2,3, Weili Zhang2,3, Yuchuan Shao3,4,5, and Jianda Shao2,3,4,5
Author Affiliations
  • 1School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 3Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 4Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 5Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang , China
  • show less
    References(29)

    [1] Popov V S. Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory)[J]. Physics-Uspekhi, 47, 855-885(2004).

    [2] Neauport J, Lavastre E, Razé G et al. Effect of electric field on laser induced damage threshold of multilayer dielectric gratings[J]. Optics Express, 15, 12508-12522(2007).

    [3] Chen S L, Zhao Y A, He H B et al. Effect of standing-wave field distribution on femosecond laser-induced damage of HfO2/SiO2 mirror coating[J]. Chinese Optics Letters, 9, 083101(2011).

    [4] Liu X F, Li D W, Zhao Y A et al. Characteristics of nodular defect in HfO2/SiO2 multilayer optical coatings[J]. Applied Surface Science, 256, 3783-3788(2010).

    [5] Liu T B, Zhu M P, Du W Y et al. A nodule dome removal strategy to improve the laser-induced damage threshold of coatings[J]. High Power Laser Science and Engineering, 10, e30(2022).

    [6] Dijon J, Poulingue M, Hue J. Thermomechanical model of mirror laser damage at 1.06 μm. Part 1: nodule ejection[J]. Proceedings of SPIE, 3578, 387-397(1999).

    [7] Li C, Zhao Y A, Cui Y et al. Comparison of 355-nm nanosecond and 1064-nm picosecond laser-induced damage in high-reflective coatings[J]. Optical Engineering, 57, 121908(2018).

    [8] Pu Y T, Kong P F, Ma P et al. The evolution of nano-precursors at film-substrate interface under nanosecond laser irradiation[J]. Optics & Laser Technology, 151, 108074(2022).

    [9] Cheng X B, Jiao H F, Lu J T et al. Nanosecond pulsed laser damage characteristics of HfO2/SiO2 high reflection coatings irradiated from crystal-film interface[J]. Optics Express, 21, 14867-14875(2013).

    [10] Papernov S, Tait A, Bittle W et al. Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy[J]. Journal of Applied Physics, 109, 113106(2011).

    [11] Cheng J A, Wang J H, Hou J et al. Effect of polishing-induced subsurface impurity defects on laser damage resistance of fused silica optics and their removal with HF acid etching[J]. Applied Sciences, 7, 838(2017).

    [12] Liu F, Jiao H F, Ma B et al. Influence of the surface and subsurface contaminants on laser-induced damage threshold of anti-reflection sub-wavelength structures working at 1064 nm[J]. Optics & Laser Technology, 127, 106144(2020).

    [13] McElhenny J E, Bambha N K. Continuous wave laser-induced damage threshold of Schott IRG-24, IRG-25, and IRG-26 at 1.07 microns[J]. Proceedings of SPIE, 11173, 111731I(2019).

    [14] Slinker K, Pitz J, Sihn S et al. Determining and scaling continuous-wave, laser-induced damage thresholds of thin reflectors[J]. Optics Express, 27, 4748-4757(2019).

    [15] Downer M C, Fork R L, Shank C V. Femtosecond imaging of melting and evaporation at a photoexcited silicon surface[J]. Journal of the Optical Society of America B, 2, 595-599(1985).

    [16] Liu H C, Mao X L, Yoo J H et al. Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 54, 1607-1624(1999).

    [17] Russo R E, Mao X L, Liu H C et al. Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation[J]. Applied Physics A, 69, S887-S894(1999).

    [18] Demos S G, Negres R A, Raman R N et al. Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica[J]. Laser & Photonics Reviews, 7, 444-452(2013).

    [19] Demos S G, Raman R N, Negres R A. Time-resolved imaging of processes associated with exit-surface damage growth in fused silica following exposure to nanosecond laser pulses[J]. Optics Express, 21, 4875-4888(2013).

    [20] Jo H, Ito Y, Hattori J et al. High-speed observation of damage generation during ultrashort pulse laser drilling of sapphire[J]. Optics Communications, 495, 127122(2021).

    [21] Ren G Q, Ito Y, Sun H J et al. Temporal-spatial characteristics of filament induced by a femtosecond laser pulse in transparent dielectrics[J]. Optics Express, 30, 4954-4964(2022).

    [22] Hernandez-Rueda J, Puerto D, Siegel J et al. Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz[J]. Applied Surface Science, 258, 9389-9393(2012).

    [23] Šiaulys N, Kudriašov V, Stanislauskas T et al. Holographic study of ultrafast optical excitation in GaN film induced by nonlinear propagation of light[J]. Optics Letters, 37, 4916-4918(2012).

    [24] Šiaulys N, Melninkaitis A, Dubietis A. In situ study of two interacting femtosecond filaments in sapphire[J]. Optics Letters, 40, 2285-2288(2015).

    [25] Šiaulys N, Gallais L, Melninkaitis A. Direct holographic imaging of ultrafast laser damage process in thin films[J]. Optics Letters, 39, 2164-2167(2014).

    [26] Zhou Q, Qiu F M, Ma P et al. Investigating the material properties of HfO2/SiO2-based anti-reflection coatings during 1064 nm laser-induced breakdown in air and vacuum conditions[J]. Optics & Laser Technology, 157, 108645(2023).

    [27] Liu X F, Zhao Y A, Li D W et al. Characteristics of plasma scalds in multilayer dielectric films[J]. Applied Optics, 50, 4226-4231(2011).

    [28] Carr C W, Matthews M J, Bude J D et al. The effect of laser pulse duration on laser-induced damage in KDP and SiO2[J]. Proceedings of SPIE, 6403, 64030K(2006).

    [29] Ushio M, Komurasaki K, Kawamura K et al. Effect of laser supported detonation wave confinement on termination conditions[J]. Shock Waves, 18, 35-39(2008).

    Tools

    Get Citation

    Copy Citation Text

    Chengjiang Xiang, Xiaofeng Liu, Chunxian Tao, Dawei Li, Yuan’an Zhao, Ziyuan Xu, Shuai Kun, He Gong, Jian Sun, Weili Zhang, Yuchuan Shao, Jianda Shao. Dynamic Damage Process of HfO2/SiO2 Anti‑Reflection Coatings Under 1064 nm Nanosecond Laser Irradiation[J]. Chinese Journal of Lasers, 2024, 51(8): 0803101

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Thin Films

    Received: Aug. 1, 2023

    Accepted: Sep. 18, 2023

    Published Online: Mar. 29, 2024

    The Author Email: Liu Xiaofeng (liuxiaofeng@siom.ac.cn), Zhao Yuan’an (yazhao@siom.ac.cn)

    DOI:10.3788/CJL231071

    CSTR:32183.14.CJL231071

    Topics