Laser & Optoelectronics Progress, Volume. 60, Issue 3, 0312011(2023)
Research Progress of Ultra-Precision Measurement of Optical Surfaces for Manufacturing
[1] Offner A. A null corrector for paraboloidal mirrors[J]. Applied Optics, 2, 153-156(1963).
[2] Jones R A. Computer controlled optical surfacing with orbital tool motion[J]. Proceedings of SPIE, 0540, 41-48(1985).
[3] Pan J H[M]. The design, manufacture and test of the aspherical optical surfaces(2004).
[4] Li S Y, Dai Y F[M]. Large and middle-scale aperture aspheric surfaces: lapping, polishing, and measurement(2016).
[5] Garbusi E, Pruss C, Osten W. Interferometer for precise and flexible asphere testing[J]. Optics Letters, 33, 2973-2975(2008).
[6] Faber C, Olesch E, Krobot R et al. Deflectometry challenges interferometry: the competition gets tougher![J]. Proceedings of SPIE, 8493, 84930R(2012).
[7] Su P, Parks R E, Wang L R et al. Software configurable optical test system: a computerized reverse Hartmann test[J]. Applied Optics, 49, 4404-4412(2010).
[8] Ghim Y S, Rhee H G, Davies A et al. 3D surface mapping of freeform optics using wavelength scanning lateral shearing interferometry[J]. Optics Express, 22, 5098-5105(2014).
[9] Platt B C, Shack R. History and principles of Shack-Hartmann wavefront sensing[J]. Journal of Refractive Surgery, 17, S573-S577(2001).
[10] Fienup J R. Phase retrieval for optical metrology: past, present and future[C], OW2B.1(2017).
[11] Berger G, Petter J. Non-contact metrology of aspheric surfaces based on MWLI technology[J]. Proceedings of SPIE, 8884, 88840V(2013).
[12] Henselmans R, Cacace L A, Kramer G F Y et al. The NANOMEFOS non-contact measurement machine for freeform optics[J]. Precision Engineering, 35, 607-624(2011).
[13] Chen S Y, Xue S, Zhai D D et al. Measurement of freeform optical surfaces: trade-off between accuracy and dynamic range[J]. Laser & Photonics Reviews, 14, 1900365(2020).
[14] Zhu R H, Sun Y, Shen H. Progress and prospect of optical freeform surface measurement[J]. Acta Optica Sinica, 41, 0112001(2021).
[15] Liang Z J, Yang Y Y, Zhao H Y et al. Advances in research and applications of optical aspheric surface metrology[J]. Chinese Optics, 15, 161-186(2022).
[16] Chen S Y, Dai Y F, Xue S[M]. CGH compensated interferometry technique for optical free-form surfaces(2020).
[17] Chen S Y, Dai Y F, Zhai D D et al. Quasi-absolute interferometric testing of cylinders[J]. Optics Letters, 47, 2278-2281(2022).
[18] Gan Z H, Peng X Q, Chen S Y et al. Fringe discretization and manufacturing analysis of a computer-generated hologram in a null test of the freeform surface[J]. Applied Optics, 57, 9913-9921(2018).
[19] Zhao C Y, Burge J H. Orthonormal vector polynomials in a unit circle, Part I: basis set derived from gradients of Zernike polynomials[J]. Optics Express, 15, 18014-18024(2007).
[20] Zhao C Y, Burge J H. Orthonormal vector polynomials in a unit circle, Part II: completing the basis set[J]. Optics Express, 16, 6586-6591(2008).
[21] Novak M, Zhao C, Burge J H. Distortion mapping correction in aspheric null testing[J]. Proceedings of SPIE, 7063, 706313(2008).
[22] Robinson B M, Reardon P J. Distortion compensation in interferometric testing of mirrors[J]. Applied Optics, 48, 560-565(2009).
[23] Chen S Y, Hu H, Guan C L. Fiducial free correction of mapping distortion in null test of aspheres and freeforms[J]. Optics Communications, 506, 127560(2022).
[24] Dai Y F, Chen S Y. Nano-precision measurement of complex optical surfaces: How to make it traceable?[M]. Zhong J. 10000 selected problems in sciences: manufacturing science, 317-321(2018).
[25] Chen S Y, Lu W W, Chen W W et al. Efficient subaperture stitching method for measurement of large area microstructured topography[J]. Optics and Lasers in Engineering, 127, 105974(2020).
[26] Parks R E, Shao L, Evans C J. Pixel-based absolute topography test for three flats[J]. Applied Optics, 37, 5951-5956(1998).
[27] Elssner K E, Burow R, Grzanna J et al. Absolute sphericity measurement[J]. Applied Optics, 28, 4649-4661(1989).
[28] Griesmann U, Wang Q D, Soons J et al. A simple ball averager for reference sphere calibrations[J]. Proceedings of SPIE, 5869, 58690S(2005).
[29] Evans C J, Kestner R N. Test optics error removal[J]. Applied Optics, 35, 1015-1021(1996).
[30] Dörband B, Seitz G. Interferometric testing of optical surfaces at its current limit[J]. Optik, 112, 392-398(2001).
[31] Glatzel H, Ashworth D, Bajuk D et al. Projection optics for EUVL micro-field exposure tools with 0.5 NA[J]. Proceedings of SPIE, 9048, 90481K(2014).
[32] Chkhalo N I, Malyshev I V, Pestov A E et al. Problems in the application of a null lens for precise measurements of aspheric mirrors[J]. Applied Optics, 55, 619-625(2016).
[33] Zhao C Y, Burge J H. Optical testing with computer generated holograms: comprehensive error analysis[J]. Proceedings of SPIE, 8838, 88380H(2013).
[34] Lin W C, Chang S T, Ho C F et al. Absolute measurement method for correction of low-spatial frequency surface figures of aspherics[J]. Optical Engineering, 56, 055101(2017).
[35] Reichelt S, Pruss C, Tiziani H J. Absolute interferometric test of aspheres by use of twin computer-generated holograms[J]. Applied Optics, 42, 4468-4479(2003).
[36] Reichelt S, Tiziani H J. Twin-CGHs for absolute calibration in wavefront testing interferometry[J]. Optics Communications, 220, 23-32(2003).
[37] Simon F, Khan G, Mantel K et al. Quasi-absolute measurement of aspheres with a combined diffractive optical element as reference[J]. Applied Optics, 45, 8606-8612(2006).
[38] Mantel K, Geist E, Harder I et al. Interferometric quasi-absolute tests for aspherics using a radial shear position[J]. Optics Letters, 34, 3178-3120(2009).
[39] Chen S Y, Zhao C Y, Dai Y F et al. Reconfigurable optical null based on counter-rotating Zernike plates for test of aspheres[J]. Optics Express, 22, 1381-1386(2014).
[40] Song B, Chen S Y, Wang G L. Subaperture testing technique of aspheres based on counter-rotating phase plates[J]. Acta Optica Sinica, 33, 1112007(2013).
[41] Chen S Y, Xue S, Dai Y F et al. Subaperture stitching test of convex aspheres by using the reconfigurable optical null[J]. Optics & Laser Technology, 91, 175-184(2017).
[42] Chen W W, Chen S Y, Tie G P et al. Null test of large convex aspheres by subaperture stitching with replaceable holograms[J]. Optics Communications, 466, 125665(2020).
[43] Chen S Y, Xue S, Wang G L et al. Subaperture stitching algorithms: a comparison[J]. Optics Communications, 390, 61-71(2017).
[44] Xue S, Dai Y F, Zeng S Y et al. Interferometric stitching method for testing cylindrical surfaces with large apertures[J]. Optics Express, 29, 19767-19789(2021).
[45] Lu W W, Guo J Y, Chen S Y. White light interferometry stitching measurement of gull-wing aspheric optics[J]. Acta Optica Sinica, 42, 0912001(2022).
[46] Chen S Y, Lu W W, Guo J Y et al. Flexible and high-resolution surface metrology based on stitching interference microscopy[J]. Optics and Lasers in Engineering, 151, 106915(2022).
[47] Pruss C, Tiziani H J. Dynamic null lens for aspheric testing using a membrane mirror[J]. Optics Communications, 233, 15-19(2004).
[48] Huang L, Choi H, Zhao W C et al. Adaptive interferometric null testing for unknown freeform optics metrology[J]. Optics Letters, 41, 5539-5542(2016).
[49] Vorontsov M A. Decoupled stochastic parallel gradient descent optimization for adaptive optics: integrated approach for wave-front sensor information fusion[J]. Journal of the Optical Society of America A, 19, 356-368(2002).
[50] Zhang L, Zhou S, Li D et al. Pure adaptive interferometer for free form surfaces metrology[J]. Optics Express, 26, 7888-7898(2018).
[51] Cao Z L, Xuan L, Hu L F et al. Investigation of optical testing with a phase-only liquid crystal spatial light modulator[J]. Optics Express, 13, 1059-1065(2005).
[52] He Y W, Huang L, Hou X et al. Modeling near-null testing method of a freeform surface with a deformable mirror compensator[J]. Applied Optics, 56, 9132-9138(2017).
[53] Xue S, Chen S Y, Fan Z B et al. Adaptive wavefront interferometry for unknown free-form surfaces[J]. Optics Express, 26, 21910-21928(2018).
[54] Xue S, Chen S Y, Tie G P et al. Adaptive null interferometric test using spatial light modulator for free-form surfaces[J]. Optics Express, 27, 8414-8428(2019).
[55] Xue S, Deng W X, Chen S Y. Intelligence enhancement of the adaptive wavefront interferometer[J]. Optics Express, 27, 11084-11102(2019).
[56] Xue S, Chen S Y, Tie G P. Near-null interferometry using an aspheric null lens generating a broad range of variable spherical aberration for flexible test of aspheres[J]. Optics Express, 26, 31172-31189(2018).
[57] Xue S, Chen S Y, Tie G P et al. Flexible interferometric null testing for concave free-form surfaces using a hybrid refractive and diffractive variable null[J]. Optics Letters, 44, 2294-2297(2019).
[58] Zhang Y, Cheng H N, Wu R M et al. Data processing for point-based in situ metrology of freeform optical surface[J]. Optics Express, 25, 13414-13424(2017).
[59] Yao J N, Anderson A, Rolland J P. Point-cloud noncontact metrology of freeform optical surfaces[J]. Optics Express, 26, 10242-10265(2018).
[60] Wang S X, Cheung C F, Kong L B et al. Fiducial-aided calibration of a displacement laser probing system for in situ measurement of optical freeform surfaces on an ultra-precision fly-cutting machine[J]. Optics Express, 28, 27415-27432(2020).
[61] Yu J, Shen Z X, Wang X Q et al. In situ noncontact measurement system and two-step compensation strategy for ultra-precision diamond machining[J]. Optics Express, 26, 30724-30739(2018).
[62] Zhang X D, Zeng Z, Liu X L et al. Compensation strategy for machining optical freeform surfaces by the combined on- and off-machine measurement[J]. Optics Express, 23, 24800-24810(2015).
[63] Fu X Y, Bing G, Zhao Q L et al. Improved error separation technique for on-machine optical lens measurement[J]. Measurement Science and Technology, 27, 045005(2016).
[64] Wang D D, Fu X Y, Xu P et al. Compact snapshot dual-mode interferometric system for on-machine measurement[J]. Optics and Lasers in Engineering, 132, 106129(2020).
[65] Xiong Y P, Luo T C, Dai Y F et al. In situ measurement and error compensation of monolithic multisurface optics[J]. Optics Communications, 484, 126665(2021).
[66] Xiong Y P, Dai Y F, Tie G P et al. Engineering a coaxial visible/infrared imaging system based on monolithic multisurface optics[J]. Applied Optics, 57, 10036-10043(2018).
[67] Wyant J C. Dynamic interferometry[J]. Optics and Photonics News, 14, 36-41(2003).
[68] Deng T, Liu F W, Qin D et al. Non-null interferometric test of X-ray cylindrical reflect mirror[J]. Acta Optica Sinica, 42, 0434001(2022).
[69] Li J, Gao X J, Fu Z L et al. Research advancement on fabrication of artificial compound eye using ultrafast laser[J]. Chinese Journal of Lasers, 49, 1002704(2022).
[70] Deng Z L, Li F J, Shi T et al. Metagratings for controlling diffractive optical fields: physics and applications[J]. Acta Optica Sinica, 41, 0823011(2021).
Get Citation
Copy Citation Text
Shanyong Chen, Shuai Xue, Yupeng Xiong, Xiaoqiang Peng, Yifan Dai. Research Progress of Ultra-Precision Measurement of Optical Surfaces for Manufacturing[J]. Laser & Optoelectronics Progress, 2023, 60(3): 0312011
Category: Instrumentation, Measurement and Metrology
Received: Sep. 22, 2022
Accepted: Oct. 17, 2022
Published Online: Feb. 22, 2023
The Author Email: Yifan Dai (dyf@nudt.edu.cn)