Chinese Journal of Lasers, Volume. 48, Issue 15, 1502001(2021)

Ultrafast Laser Nanojoining and Its Applications in the Manufacturing of Micro-Nano Devices

Guisheng Zou1, Luchan Lin2, Yu Xiao1, Zhongyang Deng1, Qiang Jia1, Bin Feng1, Wengan Wang1, Songling Xing1, Hui Ren1, Daozhi Shen1, and Lei Liu1、*
Author Affiliations
  • 1State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
  • 2Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    References(57)

    [1] Zhou Y. Microjoining and nanojoining[M](2008).

    [2] Zou G S, Yan J F, Mu F W et al. Recent progress in microjoining and nanojoining[J]. Transactions of the China Welding Institution, 32, 107-112, 118(2011).

    [3] Li X Y. Research progress of international welding institute (IIW) 2019: microjoining and nanojoining[M], 80-100(2020).

    [4] Banhart F. The formation of a connection between carbon nanotubes in an electron beam[J]. Nano Letters, 1, 329-332(2001).

    [5] Terrones M, Banhart F, Grobert N et al. Molecular junctions by joining single-walled carbon nanotubes[J]. Physical Review Letters, 89, 075505(2002).

    [6] Li X P, Gao F, Gu Z Y. Nanowire joining methods[J]. The Open Surface Science Journal, 3, 91-104(2011).

    [7] Xu S Y, Tian M L, Wang J G et al. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam[J]. Small, 1, 1221-1229(2005).

    [8] Lin L C. Research on femtosecond laser induced joining of nanomaterials and their optical/electrical properties[D](2017).

    [9] Shen D Z. Research on self-powered and flexible electronics based on moisture enabled electricity from TiO2 nanowires[D](2018).

    [10] Xing S L. Research on femtosecond laser induced nanojoining and interface modification of semiconductor nanowires[D](2019).

    [11] Dai S W, Li Q, Liu G P et al. Laser-induced single point nanowelding of silver nanowires[J]. Applied Physics Letters, 108, 121103(2016).

    [12] Li Q, Liu G P, Yang H B et al. Optically controlled local nanosoldering of metal nanowires[J]. Applied Physics Letters, 108, 193101(2016).

    [13] Zhou W M, Fang F, Hou Z Y et al. Field-effect transistor based on β-SiC nanowire[J]. IEEE Electron Device Letters, 27, 463-465(2006).

    [14] Chen C X, Yan L J, Kong E S W et al. Ultrasonic nanowelding of carbon nanotubes to metal electrodes[J]. Nanotechnology, 17, 2192-2197(2006).

    [15] Chen C, Xu D, Kong E S et al. Multichannel carbon-nanotube FETs and complementary logic gates with nanowelded contacts[J]. IEEE Electron Device Letters, 27, 852-855(2006).

    [16] Chen C X, Lu Y, Kong E S et al. Nanowelded carbon-nanotube-based solar microcells[J]. Small, 4, 1313-1318(2008).

    [17] Wu W, Hu A M, Li X G et al. Vacuum brazing of carbon nanotube bundles[J]. Materials Letters, 62, 4486-4488(2008).

    [18] Lu Y, Huang J Y, Wang C et al. Cold welding of ultrathin gold nanowires[J]. Nature Nanotechnology, 5, 218-224(2010).

    [19] Liu L, Shen D Z, Zou G S et al. Cold welding of Ag nanowires by large plastic deformation[J]. Scripta Materialia, 114, 112-116(2016).

    [20] Gong T. Joining of one-dimensional double-walled carbon nanotubes macroscopic bodies[D](2005).

    [21] Yan J F. A study on the synthesis of metal nanoparticle joining paste and its low temperature bonding through sintering[D](2013).

    [22] Zhang H Q. A study on the SiC die attach sintered by the nano-Ag paste and its high temperature reliability[D](2018).

    [23] Zhao Z Y. Research on thermal conductivity and reliability of porous sintered die attach using nano-Ag for SiC electronics[D](2018).

    [24] Feng B, Shen D Z, Wang W G et al. Cooperative bilayer of lattice-disordered nanoparticles as room-temperature sinterable nanoarchitecture for device integrations[J]. ACS Applied Materials & Interfaces, 11, 16972-16980(2019).

    [25] Wang W G, Zou G S, Jia Q et al. Mechanical properties and microstructure of low temperature sintered joints using organic-free silver nanostructured film for die attachment of SiC power electronics[J]. Materials Science and Engineering: A, 793, 139894(2020).

    [26] Jia Q, Zou G S, Wang W G et al. Sintering mechanism of a supersaturated Ag-Cu nanoalloy film for power electronic packaging[J]. ACS Applied Materials & Interfaces, 12, 16743-16752(2020).

    [27] Zhao Z Y, Liu L, Choi H S et al. Effect of nano-Al2O3 reinforcement on the microstructure and reliability of Sn-3.0Ag-0.5Cu solder joints[J]. Microelectronics Reliability, 60, 126-134(2016).

    [28] Wang G W, Guan Y C, Wang Y et al. Recent progress in research and application of nano-manipulation technologies[J]. Chinese Journal of Lasers, 48, 0802018(2021).

    [29] Ross M B, Mirkin C A, Schatz G C. Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures[J]. The Journal of Physical Chemistry C, 120, 816-830(2016).

    [30] Bell A P, Fairfield J A, McCarthy E K et al. Quantitative study of the photothermal properties of metallic nanowire networks[J]. ACS Nano, 9, 5551-5558(2015).

    [31] Sanchot A, Baffou G, Marty R et al. Plasmonic nanoparticle networks for light and heat concentration[J]. ACS Nano, 6, 3434-3440(2012).

    [33] Liu L, Peng P, Hu A M et al. Highly localized heat generation by femtosecond laser induced plasmon excitation in Ag nanowires[J]. Applied Physics Letters, 102, 073107(2013).

    [34] Huang H, Sivayoganathan M, Duley W W et al. High integrity interconnection of silver submicron/nanoparticles on silicon wafer by femtosecond laser irradiation[J]. Nanotechnology, 26, 025303(2015).

    [35] Huang H, Liu L, Peng P et al. Controlled joining of Ag nanoparticles with femtosecond laser radiation[J]. Journal of Applied Physics, 112, 123519(2012).

    [36] Lin L C, Liu L, Peng P et al. In situ nanojoining of Y-and T-shaped silver nanowires structures using femtosecond laser radiation[J]. Nanotechnology, 27, 125201(2016).

    [37] Huo J P, Zou G S, Lin L C et al. Highly focused femtosecond laser directed selective boron doping in single SiC nanowire device for n-p conversion[J]. Applied Physics Letters, 115, 133104(2019).

    [39] Jiao Z, Sivayoganathan M, Duley W W et al. Formation and characterization of femtosecond-laser-induced subcluster segregated nanoalloys[J]. The Journal of Physical Chemistry C, 118, 24746-24751(2014).

    [40] Lin L C, Zou G S, Liu L et al. Plasmonic engineering of metal-oxide nanowire heterojunctions in integrated nanowire rectification units[J]. Applied Physics Letters, 108, 203107(2016).

    [41] Xing S L, Lin L C, Huo J P et al. Plasmon-induced heterointerface thinning for Schottky barrier modification of core/shell SiC/SiO2 nanowires[J]. ACS Applied Materials & Interfaces, 11, 9326-9332(2019).

    [42] Xing S L, Lin L C, Zou G S et al. Two-photon absorption induced nanowelding for assembling ZnO nanowires with enhanced photoelectrical properties[J]. Applied Physics Letters, 115, 103101(2019).

    [43] Lin L C, Huo J P, Peng P et al. Contact engineering of single core/shell SiC/SiO2 nanowire memory unit with high current tolerance using focused femtosecond laser irradiation[J]. Nanoscale, 12, 5618-5626(2020).

    [44] Lin L C, Liu L, Musselman K et al. Plasmonic-radiation-enhanced metal oxide nanowire heterojunctions for controllable multilevel memory[J]. Advanced Functional Materials, 26, 5979-5986(2016).

    [45] Xing S L, Lin L C, Zou G S et al. Improving the electrical contact at a Pt/TiO2 nanowire interface by selective application of focused femtosecond laser irradiation[J]. Nanotechnology, 28, 405302(2017).

    [46] Xiao M, Lin L, Xing S et al. Nanojoining and tailoring of current-voltage characteristics of metal-P type semiconductor nanowire heterojunction by femtosecond laser irradiation[J]. Journal of Applied Physics, 127, 184901(2020).

    [47] Han L B, Liang L, Kang Y et al. A review of SiC IGBT: models, fabrications, characteristics, and applications[J]. IEEE Transactions on Power Electronics, 36, 2080-2093(2021).

    [48] Khazaka R, Mendizabal L, Henry D et al. Survey of high-temperature reliability of power electronics packaging components[J]. IEEE Transactions on Power Electronics, 30, 2456-2464(2015).

    [49] Sugiura K, Iwashige T, Tsuruta K et al. Reliability evaluation of SiC power module with sintered Ag die attach and stress-relaxation structure[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 9, 609-615(2019).

    [50] Zhang H Q, Wang W G, Bai H L et al. Microstructural and mechanical evolution of silver sintering die attach for SiC power devices during high temperature applications[J]. Journal of Alloys and Compounds, 774, 487-494(2019).

    [51] Zhang X Y, Wang M Y, Li X et al. A method for improving the thermal shock fatigue failure resistance of IGBT modules[J]. IEEE Transactions on Power Electronics, 35, 8532-8539(2020).

    [53] Zubir N S M, Zhang H Q, Zou G S et al. Large-area die-attachment sintered by organic-free Ag sintering material at low temperature[J]. Journal of Electronic Materials, 48, 7562-7572(2019).

    [54] Jia Q, Zou G S, Zhang H Q et al. Sintering mechanism of Ag-Pd nanoalloy film for power electronic packaging[J]. Applied Surface Science, 554, 149579(2021).

    [55] Feng B, Zou G S, Wang W G et al. A programmable, gradient-composition strategy producing synergistic and ultrahigh sensitivity amplification for flexible pressure sensing[J]. Nano Energy, 74, 104847(2020).

    [56] Shen D Z, Zou G S, Liu L et al. Scalable high-performance ultraminiature graphene micro-supercapacitors by a hybrid technique combining direct writing and controllable microdroplet transfer[J]. ACS Applied Materials & Interfaces, 10, 5404-5412(2018).

    [57] Ren H, Zou G S, Zhao Z Y et al. High-reliability wireless packaging for high-temperature SiC power device sintered by novel organic-free nanomaterial[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 10, 1953-1959(2020).

    CLP Journals

    [1] PANG Liangyu, ZHANG Qiaofen, GAO Zihao, CHEN Chubang, WU Mingyang. Design of self-similar laser compression system based on Mach-Zehnder interferometer[J]. Laser Technology, 2023, 47(6): 803

    Tools

    Get Citation

    Copy Citation Text

    Guisheng Zou, Luchan Lin, Yu Xiao, Zhongyang Deng, Qiang Jia, Bin Feng, Wengan Wang, Songling Xing, Hui Ren, Daozhi Shen, Lei Liu. Ultrafast Laser Nanojoining and Its Applications in the Manufacturing of Micro-Nano Devices[J]. Chinese Journal of Lasers, 2021, 48(15): 1502001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Apr. 7, 2021

    Accepted: May. 6, 2021

    Published Online: Jul. 16, 2021

    The Author Email: Lei Liu (liulei@tsinghua.edu.cn)

    DOI:10.3788/CJL202148.1502001

    Topics