Acta Optica Sinica, Volume. 43, Issue 21, 2111001(2023)
Aberration-Free Dual 2D MEMS Mirror Scanning Method for Optical Microscopy
[1] Wu Y C, Han X F, Su Y J et al. Multiview confocal super-resolution microscopy[J]. Nature, 600, 279-284(2021).
[2] Hu M Y, Yang D, Yang Z H et al. Polarization-sensitive optical coherence tomography for oral squamous cell carcinoma tissue imaging[J]. Acta Optica Sinica, 42, 1017002(2022).
[3] Atak M F, Farabi B, Navarrete-Dechent C et al. Confocal microscopy for diagnosis and management of cutaneous malignancies: clinical impacts and innovation[J]. Diagnostics, 13, 854(2023).
[4] Huang J, Zhou Z Q, Li M et al. Design of off-axis three-mirror system with large field of view bending for two-photon imaging of mouse cerebral cortex[J]. Acta Optica Sinica, 43, 0122001(2023).
[5] Wen Z B, Liu K Y, Jiang S Y et al. Large depth quantitative optical imaging of biological tissue[J]. Acta Optica Sinica, 42, 1717001(2022).
[6] Zhang Z Y, Yu C Y, Qiao Y L et al. Optical coherence tomography angiography in micro-integration[J]. Chinese Journal of Lasers, 49, 1507301(2022).
[7] Arthur J N, Pandey A K, Nunzi J M et al. Insight into OTFT sensors using confocal fluorescence microscopy[J]. ACS Applied Materials & Interfaces, 14, 5709-5720(2022).
[8] Francis D, Ford H D, Tatam R P. Spectrometer-based refractive index and dispersion measurement using low-coherence interferometry with confocal scanning[J]. Optics Express, 26, 3604-3617(2018).
[9] Thaarup I C, Gummesson C, Bjarnsholt T. Measuring enzymatic degradation of degradable starch microspheres using confocal laser scanning microscopy[J]. Acta Biomaterialia, 131, 464-471(2021).
[10] Xie G M, Wang S H, Zhang Y Q et al. Laser welding depth monitoring method based on optical coherence tomography[J]. Acta Optica Sinica, 43, 1114002(2023).
[11] Ji X P, Chen Y, Hou Y Q et al. Surface microscopic properties of various aggregates using laser scanning confocal microscope[J]. Construction and Building Materials, 290, 123222(2021).
[12] Alikin, Slautin, Abramov et al. Correlative confocal Raman and scanning probe microscopy in the ionically active particles of LiMn2O4 cathodes[J]. Materials, 12, 1416(2019).
[13] Choi Y M, Yoo H, Kang D. Large-area thickness measurement of transparent multi-layer films based on laser confocal reflection sensor[J]. Measurement, 153, 107390(2019).
[14] Adams M C, Salmon W C, Gupton S L et al. A high-speed multispectral spinning-disk confocal microscope system for fluorescent speckle microscopy of living cells[J]. Methods, 29, 29-41(2003).
[15] Ge Z H, Huang Y H, Liu Z Y. Performance analysis of scanning optical system with microlens array based on fill factor[J]. Acta Optica Sinica, 43, 0911004(2023).
[16] Yoon T, Kim C S, Kim K et al. Emerging applications of digital micromirror devices in biophotonic fields[J]. Optics & Laser Technology, 104, 17-25(2018).
[17] Zhang J, Zhuo J, Jin H L et al. Optical design of ultrashort pulse laser drilling system based on scanning galvanometer[J]. Acta Optica Sinica, 43, 1422003(2023).
[18] Stirman J N, Smith I T, Kudenov M W et al. Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain[J]. Nature Biotechnology, 34, 857-862(2016).
[19] Yang X F, Liu Z X, Wang P. Confocal endoscopic microscopy and its applications[J]. Chinese Journal of Lasers, 49, 1907002(2022).
[20] Ji Y Y, So B H, Kim D Y. High-speed time-domain characterization method for polygon scanners[J]. Measurement, 135, 278-286(2019).
[21] Choi S, Kim P, Boutilier R et al. Development of a high speed laser scanning confocal microscope with an acquisition rate up to 200 frames per second[J]. Optics Express, 21, 23611-23618(2013).
[22] Im K B, Han S M, Park H et al. Simple high-speed confocal line-scanning microscope[J]. Optics Express, 13, 5151-5156(2005).
[23] Römer G R B E, Bechtold P. Electro-optic and acousto-optic laser beam scanners[J]. Physics Procedia, 56, 29-39(2014).
[24] Hwang K, Seo Y H, Jeong K H. Microscanners for optical endomicroscopic applications[J]. Micro and Nano Systems Letters, 5, 1(2017).
[25] Yalcin C, Ersaro N T, Ghanbari M M et al. A MEMS-based optical scanning system for precise, high-speed neural interfacing[J]. IEEE Journal of Solid-State Circuits, 57, 3442-3452(2022).
[26] Kang S Y, Park J H, Ji C H. Design optimization of a 6.4 mm-diameter electromagnetic 2D scanning micromirror[J]. Optics Express, 28, 31272-31286(2020).
[27] Jeon J, Kim H, Jang H et al. Handheld laser scanning microscope catheter for real-time and in vivo confocal microscopy using a high definition high frame rate Lissajous MEMS mirror[J]. Biomedical Optics Express, 13, 1497-1505(2022).
[28] Arrasmith C L, Dickensheets D L, Mahadevan-Jansen A. MEMS-based handheld confocal microscope for in-vivo skin imaging[J]. Optics Express, 18, 3805-3819(2010).
[29] Tanguy Q A A, Gaiffe O, Passilly N et al. Real-time Lissajous imaging with a low-voltage 2-axis MEMS scanner based on electrothermal actuation[J]. Optics Express, 28, 8512-8527(2020).
[30] Sun J J, Guo S G, Wu L et al. 3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror[J]. Optics Express, 18, 12065-12075(2010).
[31] Mehidine H, Li M, Lendresse J F et al. A customized two photon fluorescence imaging probe based on 2D scanning MEMS mirror including electrothermal two-level-ladder dual S-shaped actuators[J]. Micromachines, 11, 704(2020).
[32] Zong W J, Wu R L, Chen S Y et al. Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging[J]. Nature Methods, 18, 46-49(2021).
[33] Stelzer E H K. The intermediate optical system of laser-scanning confocal microscopes[M]. Pawley J B. Handbook of biological confocal microscopy, 207-220(2006).
[34] Atry F, Pashaie R. Analysis of intermediary scan-lens and tube-lens mechanisms for optical coherence tomography[J]. Applied Optics, 55, 646-653(2016).
[35] Negrean A, Mansvelder H D. Optimal lens design and use in laser-scanning microscopy[J]. Biomedical Optics Express, 5, 1588-1609(2014).
[36] Sharafutdinova G, Holdsworth J, van Helden D. Improved field scanner incorporating parabolic optics Part 1: simulation[J]. Applied Optics, 48, 4389-4396(2009).
[37] Sharafutdinova G, Holdsworth J, van Helden D. Improved field scanner incorporating parabolic optics Part 2: experimental verification and potential for volume scanning[J]. Applied Optics, 49, 5517-5527(2010).
[38] Yao J, Wu T, Ye S W et al. Scanning relay system of off-axis parabolic lens improves the field of view of two-photon microscopic imaging[J]. Acta Laser Biology Sinica, 29, 217-224(2020).
Get Citation
Copy Citation Text
Guozhuo Zhang, Xu Wang, Yun Wang, Weiqian Zhao, Lirong Qiu, Han Cui. Aberration-Free Dual 2D MEMS Mirror Scanning Method for Optical Microscopy[J]. Acta Optica Sinica, 2023, 43(21): 2111001
Category: Imaging Systems
Received: May. 15, 2023
Accepted: Jun. 5, 2023
Published Online: Nov. 8, 2023
The Author Email: Cui Han (han.cui@bit.edu.cn)