Chinese Journal of Lasers, Volume. 47, Issue 7, 701027(2020)

Design and Realization of a Novel Poly-Silicon Light-Emitting Device Based on Standard CMOS Technology

Ai Kang1, Cheng Junji1, Zhu Kunfeng2, Wu Kejun1, Liu Zhongyuan3, Liu Zhiwei1, Zhao Jianming1, Huang Lei2, and Xu Kaikai1、*
Author Affiliations
  • 1State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
  • 2The 24th Research Institute of China Electronics Technology Group Corporation, Chongqing, Sichuan 400060, China
  • 3The 44th Research Institute of China Electronics Technology Group Corporation, Chongqing, Sichuan 400060, China
  • show less
    References(26)

    [1] Tsybeskov L, Lockwood D J, Ichikawa M. Silicon photonics: CMOS going optical [scanning the issue][J]. Proceedings of the IEEE, 97, 1161-1165(2009).

    [2] Wada K. Electronics and photonics convergence on Si CMOS platform[J]. Proceedings of SPIE, 5357, 16-24(2004).

    [3] Newman R. Visible light from asilicon p-n junction[J]. Physical Review, 100, 700-704(1955).

    [4] Cartier E, Tsang J C, Fischetti M V et al. Light emission during direct and Fowler-Nordheim tunneling in ultra thin MOS tunnel junctions[J]. Microelectronic Engineering, 36, 103-106(1997).

    [5] Franzò G, Irrera A, Moreira E C et al. Electroluminescence of silicon nanocrystals in MOS structures[J]. Applied Physics A, 74, 1-5(2002).

    [6] Snyman L W, du Plessis M, Aharoni H. Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconductor integrated circuitry[J]. Optical Engineering, 41, 3230-3241(2002).

    [7] Snyman L W. Aharoni H, du Plessis M. A dependency of quantum efficiency of silicon CMOS n +pp + LEDs on current density[J]. IEEE Photonics Technology Letters, 17, 2041-2043(2005).

    [8] Snyman L W, Xu K K, Polleux J L et al. Higher intensity SiAvLEDs in an RF bipolar process through carrier energy and carrier momentum engineering[J]. IEEE Journal of Quantum Electronics, 51, 3200110(2015).

    [9] Snyman L W. Aharoni H, du Plessis M, et al. Increased efficiency of silicon light-emitting diodes in a standard 1.2-μm silicon complementary metal oxide semiconductor technology[J]. Optical Engineering, 37, 2133-2141(1998).

    [10] Heikkilä L, Kuusela T, Hedman H P. Electroluminescence in Si/SiO2 layer structures[J]. Journal of Applied Physics, 89, 2179-2184(2001).

    [11] du Plessis M, Wen H Q, Bellotti E. Temperature characteristics of hot electron electroluminescence in silicon[J]. Optics Express, 23, 12605-12612(2015).

    [12] Xu K K, Li G P. A novel way to improve the quantum efficiency of silicon light-emitting diode in a standard silicon complementary metal-oxide-semiconductor technology[J]. Journal of Applied Physics, 113, 103106(2013).

    [13] Huang B J, Zhang X, Wang W et al. CMOS monolithic optoelectronic integrated circuit for on-chip optical interconnection[J]. Optics Communications, 284, 3924-3927(2011).

    [15] Wolff P A. Theory of optical radiation from breakdown avalanches in germanium[J]. Journal of Physics and Chemistry of Solids, 16, 184-190(1960).

    [16] Haecker W. Infrared radiation from breakdown plasmas in Si, GaSb, and Ge: evidence for direct free hole radiation[J]. Physica Status Solidi (a), 25, 301-310(1974).

    [17] Toriumi A, Yoshimi M, Iwase M et al. A study of photon emission from n-channel MOSFET's[J]. IEEE Transactions on Electron Devices, 34, 1501-1508(1987).

    [18] Feuerstein R J, Senitzky B. Surface breakdown of silicon[J]. Journal of Applied Physics, 70, 288-298(1991).

    [19] Gautam D K, Khokle W S, Garg K B. Effect of absorption on photon emission from reverse-biased siliconp-n junctions[J]. Solid-State Electronics, 31, 1119-1121(1988).

    [20] Baraff G A. Maximum anisotropy approximation for calculating electron distributions; application to high field transport in semiconductors[J]. Physical Review, 133, 26-33(1964).

    [21] Akil N, Kerns S E, Kerns D V. Jr, et al. Photon generation by silicon diodes in avalanche breakdown[J]. Applied Physics Letters, 73, 871-872(1998).

    [22] Xu K K, Li G. Light-emitting device with monolithic integration on bulk silicon in standard complementary metal oxide semiconductor technology[J]. Journal of Nanophotonics, 7, 073082(2013).

    CLP Journals

    [1] YANG Yong-hui, AI Kang, ZHU Kun-feng, ZHAO Jian-ming, XU Kai-kai. All-silicon Photoelectric Biosensor Based on PN Junction Cascade Light Source[J]. Electro-Optic Technology Application, 2020, 35(6): 43

    Tools

    Get Citation

    Copy Citation Text

    Ai Kang, Cheng Junji, Zhu Kunfeng, Wu Kejun, Liu Zhongyuan, Liu Zhiwei, Zhao Jianming, Huang Lei, Xu Kaikai. Design and Realization of a Novel Poly-Silicon Light-Emitting Device Based on Standard CMOS Technology[J]. Chinese Journal of Lasers, 2020, 47(7): 701027

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Jan. 10, 2020

    Accepted: --

    Published Online: Jul. 10, 2020

    The Author Email: Xu Kaikai (kaikaix@uestc.edu)

    DOI:10.3788/CJL202047.0701027

    Topics