Chinese Journal of Lasers, Volume. 49, Issue 23, 2301006(2022)
Annihilation Mechanism of Antiphase Domains in GaAs/Si(001) Materials Grown by Molecular Beam Epitaxy
[1] Liang D, Bowers J E. Recent progress in lasers on silicon[J]. Nature Photonics, 4, 511-517(2010).
[2] Kachris C, Tomkos I. Power consumption evaluation of all-optical data center networks[J]. Cluster Computing, 16, 611-623(2013).
[3] Helkey R, Saleh A A M, Buckwalter J et al. High-performance photonic integrated circuits on silicon[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 8300215(2019).
[4] Fang A W, Park H, Cohen O et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser[J]. Optics Express, 14, 9203-9210(2006).
[5] Wei Q X, Wu B P, Ren Z W et al. Photoluminescence study of two layer stacked InAs/GaAs quantum dots[J]. Acta Optica Sinica, 32, 0125001(2012).
[6] Liao M Y, Li W, Tang M C et al. Selective area intermixing of III-V quantum-dot lasers grown on silicon with two wavelength lasing emissions[J]. Semiconductor Science and Technology, 34, 085004(2019).
[7] Norman J C, Jung D, Zhang Z Y et al. A review of high-performance quantum dot lasers on silicon[J]. IEEE Journal of Quantum Electronics, 55, 2000511(2019).
[8] Wang T, Zhang J J, Liu H Y. Quantum dot lasers on silicon substrate for silicon photonic integration and their prospect[J]. Acta Physica Sinica, 64, 204209(2015).
[9] Lü Z R, Zhang Z K, Wang H et al. Research progress on 1.3 μm semiconductor quantum-dot lasers[J]. Chinese Journal of Lasers, 47, 0701016(2020).
[10] Zhang Z, Ning Y Q, Zhang J W et al. Design and fabrication of 1160-nm optically-pumped vertical-external-cavity surface-emitting laser[J]. Chinese Journal of Lasers, 47, 0701020(2020).
[11] Ning Y Q, Chen Y Y, Zhang J et al. Brief review of development and techniques for high power semiconductor lasers[J]. Acta Optica Sinica, 41, 0114001(2021).
[12] Liu A Y, Srinivasan S, Norman J et al. Quantum dot lasers for silicon photonics[J]. Photonics Research, 3, B1-B9(2015).
[13] Zhong L, Hojo A, Aiba Y et al. Atomic steps on a silicon (001) surface tilted toward an arbitrary direction[J]. Applied Physics Letters, 68, 1823-1825(1996).
[14] Németh I, Kunert B, Stolz W et al. Heteroepitaxy of GaP on Si: correlation of morphology, anti-phase-domain structure and MOVPE growth conditions[J]. Journal of Crystal Growth, 310, 1595-1601(2008).
[15] Volz K, Beyer A, Witte W et al. GaP-nucleation on exact Si (001) substrates for III/V device integration[J]. Journal of Crystal Growth, 315, 37-47(2011).
[16] Alcotte R, Martin M, Moeyaert J et al. Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility[J]. APL Materials, 4, 046101(2016).
[17] Martin M, Caliste D, Cipro R et al. Toward the III-V/Si co-integration by controlling the biatomic steps on hydrogenated Si(001)[J]. Applied Physics Letters, 109, 253103(2016).
[18] Chen W R, Wang J, Zhu L N et al. Theoretical and experimental study on epitaxial growth of antiphase boundary free GaAs on hydrogenated on-axis Si(001) surfaces[J]. Journal of Physics D: Applied Physics, 54, 445102(2021).
[19] Kwoen J, Lee J, Watanabe K et al. Elimination of anti-phase boundaries in a GaAs layer directly-grown on an on-axis Si(001) substrate by optimizing an AlGaAs nucleation layer[J]. Japanese Journal of Applied Physics, 58, SBBE07(2019).
[20] Li K S, Yang J J, Lu Y et al. Inversion boundary annihilation in GaAs monolithically grown on on-axis silicon (001)[J]. Advanced Optical Materials, 8, 2000970(2020).
[21] Rubel O, Baranovskii S D. Formation energies of antiphase boundaries in GaAs and GaP: an ab Initio study[J]. International Journal of Molecular Sciences, 10, 5104-5114(2009).
[22] Kresse G D, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 6, 15-50(1996).
[23] Kresse G D, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review. B, Condensed Matter, 54, 11169-11186(1996).
[24] Shang S L, Wang Y, Liu Z K. First-principles calculations of phonon and thermodynamic properties in the boron-alkaline earth metal binary systems: B-Ca, B-Sr, and B-Ba[J]. Physical Review B, 75, 024302(2007).
[25] Chen S M, Li W, Wu J et al. Electrically pumped continuous-wave III-V quantum dot lasers on silicon[J]. Nature Photonics, 10, 307-311(2016).
[26] Caleb S C B[D]. Investigation of antiphase boundary energetics in GaAs-on-Si(001), 94-97(2017).
Get Citation
Copy Citation Text
Chunyang Xiao, Jun Wang, Jiachen Li, Haijing Wang, Yanxing Jia, Bojie Ma, Zhuoliang Liu, Rui Ming, Yiming Bai, Yongqing Huang, Xiaomin Ren, Shuai Luo, Haiming Ji. Annihilation Mechanism of Antiphase Domains in GaAs/Si(001) Materials Grown by Molecular Beam Epitaxy[J]. Chinese Journal of Lasers, 2022, 49(23): 2301006
Category: laser devices and laser physics
Received: Dec. 27, 2021
Accepted: Mar. 25, 2022
Published Online: Oct. 31, 2022
The Author Email: Wang Jun (wangjun12@bupt.edu.cn)