Acta Optica Sinica, Volume. 43, Issue 8, 0822015(2023)

Dynamic Multi-Interference Lithography Incorporating Modulated Optical Fourier Transform System

Yan Ye1,2, Yaqi Ma1,2, Zhi Song1,2, Chang Lu1,2, Yishen Xu1,2、*, and Linsen Chen1,2、**
Author Affiliations
  • 1School of Optoelectronic Science and Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
  • 2Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, Jiangsu, China
  • show less
    References(40)

    [1] Wang S M, Wu P C, Su V C et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 13, 227-232(2018).

    [2] Fan Z B, Qiu H Y, Zhang H L et al. A broadband achromatic metalens array for integral imaging in the visible[J]. Light: Science & Applications, 8, 67(2019).

    [3] Shalaginov M Y, An S S, Zhang Y F et al. Reconfigurable all-dielectric metalens with diffraction-limited performance[J]. Nature Communications, 12, 1225(2021).

    [4] Li Y F, Zhang J Q, Qu S B et al. Circularly polarized wave reflection focusing metasurfaces[J]. Acta Physica Sinica, 64, 124102(2015).

    [5] Jiang Z J, Liang Q X, Li Z H et al. A 3D carpet cloak with non-Euclidean metasurfaces[J]. Advanced Optical Materials, 8, 2000827(2020).

    [6] Xu H X, Hu G W, Wang Y Z et al. Polarization-insensitive 3D conformal-skin metasurface cloak[J]. Light: Science & Applications, 10, 75(2021).

    [7] Song Z, Lu C, Wei G J et al. Reflective metasurface filter with optical variable color[J]. Acta Optica Sinica, 41, 2023001(2021).

    [8] Wu S L, Ye Y, Duan H G et al. Large-area, optical variable-color metasurfaces based on pixelated plasmonic nanogratings[J]. Advanced Optical Materials, 7, 1801302(2019).

    [9] Yang J H, Babicheva V E, Yu M W et al. Structural colors enabled by lattice resonance on silicon nitride metasurfaces[J]. ACS Nano, 14, 5678-5685(2020).

    [10] Deng Z L, Jin M K, Ye X et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces[J]. Advanced Functional Materials, 30, 1910610(2020).

    [11] Luo X H, Hu Y Q, Li X et al. Integrated metasurfaces with microprints and helicity-multiplexed holograms for real-time optical encryption[J]. Advanced Optical Materials, 8, 1902020(2020).

    [12] Bao Y J, Yu Y, Xu H F et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control[J]. Light: Science & Applications, 8, 95(2019).

    [13] Iqbal S, Rajabalipanah H, Zhang L et al. Frequency-multiplexed pure-phase microwave meta-holograms using bi-spectral 2-bit coding metasurfaces[J]. Nanophotonics, 9, 703-714(2020).

    [14] Yang B, Cheng H, Chen S Q et al. Multi-dimensional manipulation of optical field by metasurfaces based on fourier analysis[J]. Acta Optica Sinica, 39, 0126005(2019).

    [15] Zhang F, Pu M B, Li X et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions[J]. Advanced Functional Materials, 27, 1704295(2017).

    [16] Chen S Q, Liu W W, Li Z C et al. Metasurface-empowered optical multiplexing and multifunction[J]. Advanced Materials, 32, 1805912(2020).

    [17] Zheng R X, Pan R H, Geng G Z et al. Active multiband varifocal metalenses based on orbital angular momentum division multiplexing[J]. Nature Communications, 13, 4292(2022).

    [18] Yan J X, Wang Y T, Liu Y et al. Single pixel imaging based on large capacity spatial multiplexing metasurface[J]. Nanophotonics, 11, 3071-3080(2022).

    [19] Maguid E, Yulevich I, Veksler D et al. Photonic spin-controlled multifunctional shared-aperture antenna array[J]. Science, 352, 1202-1206(2016).

    [20] Ma M L, Li Z, Liu W W et al. Optical information multiplexing with nonlinear coding metasurfaces[J]. Laser & Photonics Reviews, 13, 1900045(2019).

    [21] Wan W P, Yang W H, Ye S et al. Tunable full-color vectorial meta-holography[J]. Advanced Optical Materials, 10, 2201478(2022).

    [22] Sun T, Hu J P, Zhu X J et al. Broadband single-chip full stokes polarization-spectral imaging based on all-dielectric spatial multiplexing metalens[J]. Laser & Photonics Reviews, 16, 2100650(2022).

    [23] Hsu W L, Chen Y C, Yeh S P et al. Review of metasurfaces and metadevices: advantages of different materials and fabrications[J]. Nanomaterials, 12, 1973(2022).

    [24] She A L, Zhang S Y, Shian S et al. Large area metalenses: design, characterization, and mass manufacturing[J]. Optics Express, 26, 1573-1585(2018).

    [25] Colburn S, Zhan A L, Majumdar A. Varifocal zoom imaging with large area focal length adjustable metalenses[J]. Optica, 5, 825-831(2018).

    [26] Xu J, Wang Z B, Zhang Z A et al. Effective intensity distributions used for direct laser interference exposure[J]. RSC Advances, 5, 54947-54951(2015).

    [27] Leibovici M C R, Gaylord T K. Photonic-crystal waveguide structure by pattern-integrated interference lithography[J]. Optics Letters, 40, 2806-2809(2015).

    [28] Wang K N, Zheng J H, Lu F Y et al. Varied-line-spacing switchable holographic grating using polymer-dispersed liquid crystal[J]. Applied Optics, 55, 4952-4957(2016).

    [29] Behera S, Kumar M, Joseph J. Submicrometer photonic structure fabrication by phase spatial-light-modulator-based interference lithography[J]. Optics Letters, 41, 1893-1896(2016).

    [30] Liang C W, Qu T, Cai J X et al. Wafer-scale nanopatterning using fast-reconfigurable and actively-stabilized two-beam fiber-optic interference lithography[J]. Optics Express, 26, 8194-8200(2018).

    [31] Xue G P, Lu H O, Li X H et al. Patterning nanoscale crossed grating with high uniformity by using two-axis Lloyd's mirrors based interference lithography[J]. Optics Express, 28, 2179-2191(2020).

    [32] Chen L S, Qiao W, Ye Y et al. Critical technologies of micro-nano-manufacturing and its applications for flexible optoelectronic devices[J]. Acta Optica Sinica, 41, 0823018(2021).

    [33] Ye Y, Chen L S, Lou Y M et al. Super-resolution microscopy imaging method and system for continuously adjustable structured light illumination[P].

    [34] Wu S L, Ye Y, Jiang Z Y et al. Large-area, ultrathin metasurface exhibiting strong unpolarized ultrabroadband absorption[J]. Advanced Optical Materials, 7, 1901162(2019).

    [35] Wu S L, Ye Y, Gu Y et al. Transmitted plasmonic colors with different overlays utilizing the Fano-resonance[J]. Optics Express, 27, 9570-9577(2019).

    [36] Wu S L, Ye Y, Chen L S. A broadband omnidirectional absorber incorporating plasmonic metasurfaces. Journal of Materials Chemistry C, 6, 11593-11597(2018).

    [37] Ye Y, Xu F C, Wei G J et al. Real time variable parameter micro-nano optical field modulation system and interference lithography system[P].

    [38] Ye Y, Xu F C, Wei G J et al. Scalable Fourier transform system for instantly structured illumination in lithography[J]. Optics Letters, 42, 1978-1981(2017).

    [39] Ye Y, Xu F C, Wei G J et al. Real-time variable parameter micro-nano optical field modulation system and interference lithography system[P].

    [40] Lu C, Xu F C, Xu Y S et al. Interference lithography of space-variant grating structures by phase modulation[J]. Optics and Precision Engineering, 30, 1836-1844(2022).

    Tools

    Get Citation

    Copy Citation Text

    Yan Ye, Yaqi Ma, Zhi Song, Chang Lu, Yishen Xu, Linsen Chen. Dynamic Multi-Interference Lithography Incorporating Modulated Optical Fourier Transform System[J]. Acta Optica Sinica, 2023, 43(8): 0822015

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: Oct. 28, 2022

    Accepted: Dec. 2, 2022

    Published Online: Apr. 6, 2023

    The Author Email: Yishen Xu (xys2001@suda.edu.cn), Linsen Chen (lschen@suda.edu.cn)

    DOI:10.3788/AOS221892

    Topics