Chinese Journal of Lasers, Volume. 46, Issue 7, 0704009(2019)

Design of Linear Dispersive Objective for Chromatic Confocal Displacement Sensor

Jing Ma1,3, Yuejing Qi2,3, Zengxiong Lu2,3、*, Jiani Su2, Guanghua Yang2,3, Wei Qi2, Qingyang Zhang2, and Jinxin Chen2
Author Affiliations
  • 1 Academy of Opto-Electronics, Chinese Academy of Sciences, Beijing 100094, China
  • 2 Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
  • 3 School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(12)
    Working principle of chromatic confocal displacement sensor
    Initial structure of dispersive objective
    Structure of dispersive objective after optimization
    Partial enlargement of dispersion range
    Scatter diagram at each wavelength. (a) 450 nm; (b) 550 nm; (c) 650 nm
    Curve of spherical aberration at each wavelength. (a) 450 nm; (b) 550 nm; (c) 650 nm
    Fitting curve of wavelength-focus shift
    Histogram of linear determination coefficient distributions
    • Table 1. Combinations of glass materials that satisfy linear axial dispersion condition

      View table

      Table 1. Combinations of glass materials that satisfy linear axial dispersion condition

      ParameterCombination 1(N-KZFS11,N-SF66,N-PK52A)Combination 2(N-KZFS11,N-PK51,N-SF66)Combination 3(N-KZFS11,N-PK52A,N-SF66)Combination 4(N-KZFS11,N-PK51A,N-SF66)Combination 5(KZFS12,N-PK52A,N-SF66)
      φ10.10400.10400.10200.10800.1080
      φ2-0.0367-0.0347-0.0347-0.0367-0.0247
      φ3-0.0340-0.0360-0.0360-0.0380-0.0500
      δs'CF1.00651.00001.01041.05321.0049
      i=1NφdiνdiRλi0.0000000090.0000001720.0000006020.0000006190.000000766
    • Table 2. Glass parameters in combination 1

      View table

      Table 2. Glass parameters in combination 1

      MaterialN-KZFS11N-SF66N-PK52A
      Refractive index1.63771.92291.4970
      Abbe number42.4120.8881.61
      Optical power0.1040-0.0367-0.0340
    • Table 3. Lens parameters for each dispersive objective

      View table

      Table 3. Lens parameters for each dispersive objective

      Lens numberGlassOptical powerRadius of frontsurface /mmRadius of backsurface /mmThickness /mm
      1N-SF66-0.0183-101.158101.1582
      2N-PK52A-0.0170-58.80158.8012
      3N-KZFS110.034735.790-35.7905
      4N-SF66-0.0183127.14735.7902
      5N-KZFS110.034735.790-35.7905
      6N-KZFS110.034735.790-35.7905
      7N-PK52A-0.0170-35.790162.5922
    • Table 4. Results of Monte Carlo analysis

      View table

      Table 4. Results of Monte Carlo analysis

      Wavelength /μmRadius ofAiry spot /μmLess than 90%of spot radiusin Monte Carloanalysis /μm
      0.451.1381.09199
      0.471.1891.12103
      0.491.2401.19069
      0.511.2901.12016
      0.531.3411.17195
      0.551.3911.17152
      0.571.4421.26518
      0.591.4931.13704
      0.611.5431.16347
      0.631.5941.22053
      0.651.6441.20372
    Tools

    Get Citation

    Copy Citation Text

    Jing Ma, Yuejing Qi, Zengxiong Lu, Jiani Su, Guanghua Yang, Wei Qi, Qingyang Zhang, Jinxin Chen. Design of Linear Dispersive Objective for Chromatic Confocal Displacement Sensor[J]. Chinese Journal of Lasers, 2019, 46(7): 0704009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: measurement and metrology

    Received: Dec. 27, 2018

    Accepted: Feb. 18, 2019

    Published Online: Jul. 11, 2019

    The Author Email: Zengxiong Lu (wlzengx103@163.com)

    DOI:10.3788/CJL201946.0704009

    Topics