Laser & Optoelectronics Progress, Volume. 57, Issue 20, 200001(2020)
Quantitative Phase Microscopy with High Stability
[1] Gabor D. A new microscopic principle[J]. Nature, 161, 777-778(1948).
[2] Schnars U, Juptner W. Direct recording of holograms by a CCD target and numerical reconstruction[J]. Applied Optics, 33, 179-181(1994).
[3] Lin Y C, Chen H C, Tu H Y et al. Optically driven full-angle sample rotation for tomographic imaging in digital holographic microscopy[J]. Optics Letters, 42, 1321-1324(2017).
[4] Neutsch K. Gö-ring L, Tranelis M J, et al. Three-dimensional particle localization with common-path digital holographic microscopy[J]. Proceedings of SPIE, 1094, 109440J(2019).
[5] Kreis T. Handbook of holographic interferometry[M]. New Jersey: Wiley(2004).
[6] Geng J. Three-dimensional display technologies[J]. Advances in Optics and Photonics, 5, 456-535(2013).
[7] Hasegawa S, Hayasaki Y, Nishida N. Holographic femtosecond laser processing with multiplexed phase Fresnel lenses[J]. Optics Letters, 31, 1705-1707(2006).
[8] Lin X, Hao J Y, Wang K et al. Frequency expanded non-interferometric phase retrieval for holographic data storage[J]. Optics Express, 28, 511-518(2020).
[9] Yaroslavsky L. Digital holography and digital image processing: principles, methods, algorithms[M]. New York: Springer Science & Business Media(2013).
[12] Sutkowski M, Kujawińska M. Application of liquid crystal (LC) devices for optoelectronic reconstruction of digitally stored holograms[J]. Optics and Lasers in Engineering, 33, 191-201(2000).
[13] Kohler C, Schwab X, Osten W. Optimally tuned spatial light modulators for digital holography[J]. Applied Optics, 45, 960-967(2006).
[14] Zwick S, Haist T, Warber M et al. Dynamic holography using pixelated light modulators[J]. Applied Optics, 49, F47-F58(2010).
[15] Reicherter M, Haist T, Wagemann E U et al. Optical particle trapping with computer-generated holograms written on a liquid-crystal display[J]. Optics Letters, 24, 608-610(1999).
[16] DaneshPanah M, Zwick S, Schaal F et al. 3D holographic imaging and trapping for non-invasive cell identification and tracking[J]. Journal of Display Technology, 6, 490-499(2010).
[17] Yu H Q, Jia S H, Dong J et al. Phase curvature compensation in digital holographic microscopy based on phase gradient fitting and optimization[J]. Journal of the Optical Society of America A, 36, D1-D6(2019).
[18] Liu S, Lian Q S, Xu Z P. Phase aberration compensation for digital holographic microscopy based on double fitting and background segmentation[J]. Optics and Lasers in Engineering, 115, 238-242(2019).
[19] Maurer C, Jesacher A, Bernet S et al. What spatial light modulators can do for optical microscopy[J]. Laser & Photonics Reviews, 5, 81-101(2011).
[20] Haist T, Hasler M, Osten W et al. Programmable microscopy[M]. ∥ Bahram J, Enrique T, Pedro A. Multi-dimensional imaging. Chichester: John Wiley & Sons, Ltd., 153-173(2014).
[21] Marquet P, Depeursinge C. Digital holographic microscopy: a new imaging technique to quantitatively explore cell dynamics with nanometer sensitivity[M]. ∥Multi-dimensional imaging. Chichester: John Wiley & Sons, Ltd., 197-223(2014).
[23] Lee B, Kim Y. Three-dimensional display and imaging: status and prospects[M]. ∥Optical imaging and metrology. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 31-56(2012).
[24] Osten W, Baumbach T, Juptner W. Comparative digital holography[J]. Optics Letters, 27, 1764-1766(2002).
[25] Baumbach T. Osten W, von Kopylow C, et al. Remote metrology by comparative digital holography[J]. Applied Optics, 45, 925-934(2006).
[26] Mico V, Zheng J J, Garcia J et al. Resolution enhancement in quantitative phase microscopy[J]. Advances in Optics and Photonics, 11, 135-214(2019).
[27] Yaghoubi S H S, Ebrahimi S, Dashtdar M et al. Common-path, single-shot phase-shifting digital holographic microscopy using a Ronchi ruling[J]. Applied Physics Letters, 114, 183701(2019).
[28] Charriere F, Kuhn J, Colomb T et al. Characterization of microlenses by digital holographic microscopy[J]. Applied Optics, 45, 829-835(2006).
[29] Kemper B, von Bally G. Digital holographic microscopy for live cell applications and technical inspection[J]. Applied Optics, 47, A52-A61(2008).
[30] Park Y, Choi W, Yaqoob Z et al. Speckle-field digital holographic microscopy[J]. Optics Express, 17, 12285-12292(2009).
[31] Bertaux N, Frauel Y, Réfrégier P et al. Speckle removal using a maximum-likelihood technique with isoline gray-level regularization[J]. Journal of the Optical Society of America A, 21, 2283-2291(2004).
[32] Zhao J L, Yan X B, Sun W W et al. Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states[J]. Optics Letters, 35, 3519-3521(2010).
[34] Cai L, Liu Q, Yang X. Phase-shift extraction and wave-front reconstruction in phase-shifting interferometry with arbitrary phase steps[J]. Optics Letters, 28, 1808-1810(2003).
[35] Meng X, Cai L, Xu X et al. Two-step phase-shifting interferometry and its application in image encryption[J]. Optics Letters, 31, 1414-1416(2006).
[38] Yuan C J, Zhai H C, Wang X L et al. Lensless digital holography with short-coherence light source for three-dimensional surface contouring of reflecting micro-object[J]. Optics Communications, 270, 176-179(2007).
[40] Gao P, Yao B L, Min J W et al. Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters[J]. Optics Express, 19, 1930-1935(2011).
[41] Min J W, Yao B L, Gao P et al. Parallel phase-shifting interferometry based on Michelson-like architecture[J]. Applied Optics, 49, 6612-6616(2010).
[42] Qu W J, Liu D A, Zhi Y N et al. Visualization of domain inversion region characteristics in RuO2∶LiNbO3 crystal by digital holographic interferometry[J]. Acta Physica Sinica, 55, 4276-4281(2006).
[43] Li J, Peng Z. Statistic optics discussion on the formula of digital holographic 3D surface profiling measurement[J]. Measurement, 43, 381-384(2010).
[45] Wang X G, Zhao D M, Jing F et al. Information synthesis (complex amplitude addition and subtraction) and encryption with digital holography and virtual optics[J]. Optics Express, 14, 1476-1486(2006).
[47] Popescu G, Ikeda T, Goda K et al. Optical measurement of cell membrane tension[J]. Physical Review Letters, 97, 218101(2006).
[49] de Groot P J. Phase-shift calibration errors in interferometers with spherical Fizeau cavities[J]. Applied Optics, 34, 2856-2863(1995).
[50] Schwider J. Fizeau-type multi-pass shack-hartmann-test[J]. Optics Express, 16, 362-372(2008).
[51] Zhu W H, Chen L, Yang Y et al. Advanced simultaneous phase-shifting Fizeau interferometer[J]. Optics & Laser Technology, 111, 134-139(2019).
[54] Dobroiu A, Sakai H, Ootaki H et al. Coaxial Mirau interferometer[J]. Optics Letters, 27, 1153-1155(2002).
[55] Bhushan B, Wyant J C, Koliopoulos C L. Measurement of surface topography of magnetic tapes by Mirau interferometry[J]. Applied Optics, 24, 1489-1497(1985).
[56] Mehta D S, Sharma A, Dubey V et al. Quantitative phase imaging of biological cells and tissues using singleshot white light interference microscopy and phase subtraction method for extended range of measurement[J]. Proceedings of SPIE, 9718, 971828(2016).
[57] Popescu G, Ikeda T, Dasari R R et al. Diffraction phase microscopy for quantifying cell structure and dynamics[J]. Optics Letters, 31, 775-777(2006).
[59] Wang D, Xie Z M, Wang C et al. Probe misalignment calibration in fiber point-diffraction interferometer[J]. Optics Express, 27, 34312-34322(2019).
[60] Shaked N T, Zhu Y Z, Rinehart M T et al. Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells[J]. Optics Express, 17, 15585-15591(2009).
[61] Gao P, Harder I, Nercissian V et al. Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy[J]. Optics Letters, 35, 712-714(2010).
[62] Ronchi V. On the phase grating interferometer[J]. Applied Optics, 4, 1041-1042(1965).
[63] Mico V, Zalevsky Z, Garcia J. Superresolved common-path phase-shifting digital inline holographic microscopy using a spatial light modulator[J]. Optics Letters, 37, 4988-4990(2012).
[65] Picazo-Bueno J Á, Micó V. Opposed-view spatially multiplexed interferometric microscopy[J]. Journal of Optics, 21, 035701(2019).
[66] Mico V, Zalevsky Z, Garcia J. Superresolution optical system by common-path interferometry[J]. Optics Express, 14, 5168-5177(2006).
[67] Gao P, Pedrini G, Osten W. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy[J]. Optics Letters, 38, 1328-1330(2013).
[68] Platt B C, Shack R. History and principles of shack-hartmann wavefront sensing[J]. Journal of Refractive Surgery, 17, S573-S577(2001).
[69] Rativa D, de Araujo R E, Gomes A S et al. Hartmann-Shack wavefront sensing for nonlinear materials characterization[J]. Optics Express, 17, 22047-22053(2009).
[70] Laude V, Olivier S, Dirson C et al. Hartmann wave-front scanner[J]. Optics Letters, 24, 1796-1798(1999).
[71] Rimmer M P, Wyant J C. Evaluation of large aberrations using a lateral-shear interferometer having variable shear[J]. Applied Optics, 14, 142-150(1975).
[72] Liu X J, Gao Y S. Surface roughness profile measurement using shearing microscope interference method[J]. China Measurement Technology, 30, 3-5(2004).
[73] Almoro P F, Pedrini G, Osten W. Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field[J]. Applied Optics, 45, 8596-8605(2006).
[74] Pedrini G, Osten W, Zhang Y. Wave-front reconstruction from a sequence of interferograms recorded at different planes[J]. Optics Letters, 30, 833-835(2005).
[75] Bao P, Zhang F C, Pedrini G et al. Phase retrieval using multiple illumination wavelengths[J]. Optics Letters, 33, 309-311(2008).
[76] Faulkner H M L, Rodenburg J M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm[J]. Physical Review Letters, 93, 023903(2004).
[77] Rodenburg J M. Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 85, 4795-4797(2004).
[78] Zhang F C, Pedrini G, Osten W. Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation[J]. Physical Review A, 75, 043805(2007).
[79] Liu Y J, Chen B, Li E et al. Phase retrieval in X-ray imaging based on using structured illumination[J]. Physical Review A, 78, 023817(2008).
[81] Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects part II[J]. Physica, 9, 974-986(1942).
[83] Maurer C, Jesacher A, Bernet S et al. Phase contrast microscopy with full numerical aperture illumination[J]. Optics Express, 16, 19821-19829(2008).
[84] Gao P, Yao B L, Harder I et al. Phase-shifting Zernike phase contrast microscopy for quantitative phase measurement[J]. Optics Letters, 36, 4305-4307(2011).
[85] Latychevskaia T, Fink H. Solution to the twin image problem in holography[J]. Physical Review Letters, 98, 233901(2007).
[87] Gaur C, Mohan B, Khare K. Sparsity-assisted solution to the twin image problem in phase retrieval[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 32, 1922-1927(2015).
[89] Rivenson Y, Zhang Y B, Gunaydin H et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light-Science & Applications, 7, 17141(2018).
[90] Zhang W H, Cao L C, Brady D J et al. Twin-image-free holography: a compressive sensing approach[J]. Physical Review Letters, 121, 093902(2018).
[92] Popescu G, Deflores L P, Vaughan J C et al. Fourier phase microscopy for investigation of biological structures and dynamics[J]. Optics Letters, 29, 2503-2505(2004).
[93] North-Morris M B, Millerd J E, Brock N J et al. Phase-shifting multiwavelength dynamic interferometer[J]. Proceedings of SPIE, 5531, 64-75(2004).
[94] Novak M, Millerd J E, Brock N et al. Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer[J]. Applied Optics, 44, 6861-6868(2005).
[95] Millerd J, Brock N, Hayes J et al. Pixelated phase-mask dynamic interferometers[M]. Berlin/Heidelberg: Springer-Verlag, 640-647(2005).
[96] Millerd J E, Brock N J, Hayes J B et al. Instantaneous phase-shift point-diffraction interferometer[J]. Proceedings of SPIE, 5531, 264-272(2004).
[97] Jensen M A, Nordin G P. Finite-aperture wire grid polarizers[J]. Journal of the Optical Society of America A, 17, 2191-2198(2000).
[98] Stenkamp B, Abraham M, Ehrfeld W et al. Grid polarizer for the visible spectral region[J]. Proceedings of SPIE, 2213, 288-296(1994).
[99] Clausnitzer T, Fuchs H J, Kley E B et al. Polarizing metal stripe gratings for a micro-optical polarimeter[J]. Proceedings of SPIE, 5183, 8-15(2003).
[100] Wang Z, Millet L, Mir M et al. Spatial light interference microscopy (SLIM)[J]. Optics Express, 19, 1016-1026(2011).
[101] Ma Y, Guo S Y, Pan Y et al. Quantitative phase microscopy with enhanced contrast and improved resolution through ultra-oblique illumination (UO-QPM)[J]. Journal of Biophotonics, 12, e201900011(2019).
[103] Majeed H, Nguyen T H, Kandel M E et al. Label-free quantitative evaluation of breast tissue using Spatial Light Interference Microscopy (SLIM)[J]. Scientific Reports, 8, 6875(2018).
Get Citation
Copy Citation Text
Kai Wen, Ying Ma, Meiling Zhang, Yu Wang, Chi Fu, Juanjuan Zheng, Lixin Liu, Peng Gao, Baoli Yao. Quantitative Phase Microscopy with High Stability[J]. Laser & Optoelectronics Progress, 2020, 57(20): 200001
Category: Reviews
Received: Mar. 19, 2020
Accepted: Apr. 20, 2020
Published Online: Oct. 13, 2020
The Author Email: Peng Gao (peng.gao@xidian.edu.cn)