Photonics Research, Volume. 9, Issue 5, 722(2021)
Dry-etched ultrahigh-Q silica microdisk resonators on a silicon chip
[1] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).
[2] T. J. Kippenberg, A. L. Gaeta, M. Lipson, M. L. Gorodetsky. Dissipative Kerr solitons in optical microresonators. Science, 361, 8083(2018).
[3] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. Kippenberg. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).
[4] D. Armani, T. Kippenberg, S. Spillane, K. Vahala. Ultra-high-
[5] H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, K. J. Vahala. Chemically etched ultrahigh-
[6] J.-B. Jager, V. Calvo, E. Delamadeleine, E. Hadji, P. Noé, T. Ricart, D. Bucci, A. Morand. High-
[7] L. Wu, H. Wang, Q. Yang, Q. Ji, B. Shen, C. Bao, M. Gao, K. Vahala. Greater than one billion
[8] Y. Xuan, Y. Liu, L. T. Varghese, A. J. Metcalf, X. Xue, P.-H. Wang, K. Han, J. A. Jaramillo-Villegas, A. Al Noman, C. Wang, S. Kim, M. Teng, Y. J. Lee, B. Niu, L. Fan, J. Wang, D. E. Leaird, A. M. Weiner, M. Qi. High-
[9] D. T. Spencer, J. F. Bauters, M. J. Heck, J. E. Bowers. Integrated waveguide coupled Si3N4 resonators in the ultrahigh-
[10] X. Ji, F. A. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, M. Lipson. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 4, 619-624(2017).
[11] M. H. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, T. J. Kippenberg. Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins. Optica, 5, 884-892(2018).
[12] M. H. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, T. J. Kippenberg. Photonic Damascene process for integrated high-
[13] M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, M. Lončar. Monolithic ultra-high-
[14] A. Boes, B. Corcoran, L. Chang, J. Bowers, A. Mitchell. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev., 12, 1700256(2018).
[15] B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, M. Lončar. Diamond nonlinear photonics. Nat. Photonics, 8, 369-374(2014).
[16] M. Pu, L. Ottaviano, E. Semenova, K. Yvind. Efficient frequency comb generation in AlGaAs-on-insulator. Optica, 3, 823-826(2016).
[17] Z. Gong, A. Bruch, M. Shen, X. Guo, H. Jung, L. Fan, X. Liu, L. Zhang, J. Wang, J. Li, J. Yan, H. X. Tang. High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators. Opt. Lett., 43, 4366-4369(2018).
[18] D. J. Wilson, K. Schneider, S. Hönl, M. Anderson, Y. Baumgartner, L. Czornomaz, T. J. Kippenberg, P. Seidler. Integrated gallium phosphide nonlinear photonics. Nat. Photonics, 14, 57-62(2020).
[19] X. Lu, J. Y. Lee, S. Rogers, Q. Lin. Optical Kerr nonlinearity in a high-
[20] L. Chang, W. Xie, H. Shu, Q.-F. Yang, B. Shen, A. Boes, J. D. Peters, W. Jin, C. Xiang, S. Liu, G. Moille, S.-P. Yu, X. Wang, K. Srinivasan, S. B. Papp, K. Vahala, J. E. Bowers. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Commun., 11, 1331(2020).
[21] A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, M. R. Watts. Ultralow-loss silicon ring resonators. Opt. Lett., 37, 4236-4238(2012).
[22] S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, M. Lipson. Low-loss silicon platform for broadband mid-infrared photonics. Optica, 4, 707-712(2017).
[23] X. Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh, K. Vahala. Soliton frequency comb at microwave rates in a high-
[24] M.-G. Suh, K. Vahala. Gigahertz-repetition-rate soliton microcombs. Optica, 5, 65-66(2018).
[25] G. Li, P. Liu, X. Jiang, C. Yang, J. Ma, H. Wu, M. Xiao. High-
[26] J. Ma, L. Xiao, J. Gu, H. Li, X. Cheng, G. He, X. Jiang, M. Xiao. Visible Kerr comb generation in a high-
[27] C. Pyrlik, J. Schlegel, F. Böhm, A. Thies, O. Krüger, O. Benson, A. Wicht, G. Tränkle. Integrated thermal silica micro-resonator waveguide system with ultra-low fluorescence. IEEE Photon. Technol. Lett., 31, 479-482(2019).
[28] X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, O. Painter. High-
[29] T. Uchida. Application of radio-frequency discharged plasma produced in closed magnetic neutral line for plasma processing. Jpn. J. Appl. Phys., 33, L43-L44(1994).
[30] T. Uchida, S. Hamaguchi. Magnetic neutral loop discharge (NLD) plasmas for surface processing. J. Phys. D, 41, 083001(2008).
[31] M. Cai, O. Painter, K. J. Vahala. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett., 85, 74-77(2000).
[32] T. Carmon, L. Yang, K. J. Vahala. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express, 12, 4742-4750(2004).
[33] T. Kippenberg, S. Spillane, K. Vahala. Modal coupling in traveling-wave resonators. Opt. Lett., 27, 1669-1671(2002).
[34] M. L. Gorodetsky, A. D. Pryamikov, V. S. Ilchenko. Rayleigh scattering in high-
[35] A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, L. Maleki. Optical resonators with ten million finesse. Opt. Express, 15, 6768-6773(2007).
[36] C. Dong, C. Zou, J. Cui, Y. Yang, Z. Han, G. Guo. Ringing phenomenon in silica microspheres. Chin. Opt. Lett., 7, 299-301(2009).
[37] K. Y. Yang, K. Beha, D. C. Cole, X. Yi, P. Del’Haye, H. Lee, J. Li, D. Y. Oh, S. A. Diddams, S. B. Papp, K. J. Vahala. Broadband dispersion-engineered microresonator on a chip. Nat. Photonics, 10, 316-320(2016).
[38] H. Lee, T. Chen, J. Li, O. Painter, K. J. Vahala. Ultra-low-loss optical delay line on a silicon chip. Nat. Commun., 3, 867(2012).
Get Citation
Copy Citation Text
Jiaxin Gu, Jie Liu, Ziqi Bai, Han Wang, Xinyu Cheng, Guanyu Li, Menghua Zhang, Xinxin Li, Qi Shi, Min Xiao, Xiaoshun Jiang, "Dry-etched ultrahigh-Q silica microdisk resonators on a silicon chip," Photonics Res. 9, 722 (2021)
Category: Integrated Optics
Received: Oct. 19, 2020
Accepted: Feb. 11, 2021
Published Online: Apr. 26, 2021
The Author Email: Xiaoshun Jiang (jxs@nju.edu.cn)