Photonics Research, Volume. 9, Issue 5, 722(2021)

Dry-etched ultrahigh-Q silica microdisk resonators on a silicon chip

Jiaxin Gu1, Jie Liu1, Ziqi Bai1, Han Wang1, Xinyu Cheng1, Guanyu Li1, Menghua Zhang1, Xinxin Li1, Qi Shi1, Min Xiao1,2, and Xiaoshun Jiang1、*
Author Affiliations
  • 1National Laboratory of Solid State Microstructures, College of Engineering and Applied Science and School of Physics, Nanjing University, Nanjing 210093, China
  • 2Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
  • show less
    References(38)

    [1] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [2] T. J. Kippenberg, A. L. Gaeta, M. Lipson, M. L. Gorodetsky. Dissipative Kerr solitons in optical microresonators. Science, 361, 8083(2018).

    [3] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. Kippenberg. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [4] D. Armani, T. Kippenberg, S. Spillane, K. Vahala. Ultra-high-Q toroid microcavity on a chip. Nature, 421, 925-928(2003).

    [5] H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, K. J. Vahala. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photonics, 6, 369-373(2012).

    [6] J.-B. Jager, V. Calvo, E. Delamadeleine, E. Hadji, P. Noé, T. Ricart, D. Bucci, A. Morand. High-Q silica microcavities on a chip: from microtoroid to microsphere. Appl. Phys. Lett., 99, 181123(2011).

    [7] L. Wu, H. Wang, Q. Yang, Q. Ji, B. Shen, C. Bao, M. Gao, K. Vahala. Greater than one billion Q factor for on-chip microresonators. Opt. Lett., 45, 5129-5131(2020).

    [8] Y. Xuan, Y. Liu, L. T. Varghese, A. J. Metcalf, X. Xue, P.-H. Wang, K. Han, J. A. Jaramillo-Villegas, A. Al Noman, C. Wang, S. Kim, M. Teng, Y. J. Lee, B. Niu, L. Fan, J. Wang, D. E. Leaird, A. M. Weiner, M. Qi. High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation. Optica, 3, 1171-1180(2016).

    [9] D. T. Spencer, J. F. Bauters, M. J. Heck, J. E. Bowers. Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime. Optica, 1, 153-157(2014).

    [10] X. Ji, F. A. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, M. Lipson. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 4, 619-624(2017).

    [11] M. H. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, T. J. Kippenberg. Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins. Optica, 5, 884-892(2018).

    [12] M. H. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, T. J. Kippenberg. Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics. Optica, 3, 20-25(2016).

    [13] M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, M. Lončar. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 4, 1536-1537(2017).

    [14] A. Boes, B. Corcoran, L. Chang, J. Bowers, A. Mitchell. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev., 12, 1700256(2018).

    [15] B. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, M. Lončar. Diamond nonlinear photonics. Nat. Photonics, 8, 369-374(2014).

    [16] M. Pu, L. Ottaviano, E. Semenova, K. Yvind. Efficient frequency comb generation in AlGaAs-on-insulator. Optica, 3, 823-826(2016).

    [17] Z. Gong, A. Bruch, M. Shen, X. Guo, H. Jung, L. Fan, X. Liu, L. Zhang, J. Wang, J. Li, J. Yan, H. X. Tang. High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators. Opt. Lett., 43, 4366-4369(2018).

    [18] D. J. Wilson, K. Schneider, S. Hönl, M. Anderson, Y. Baumgartner, L. Czornomaz, T. J. Kippenberg, P. Seidler. Integrated gallium phosphide nonlinear photonics. Nat. Photonics, 14, 57-62(2020).

    [19] X. Lu, J. Y. Lee, S. Rogers, Q. Lin. Optical Kerr nonlinearity in a high-Q silicon carbide microresonator. Opt. Express, 22, 30826-30832(2014).

    [20] L. Chang, W. Xie, H. Shu, Q.-F. Yang, B. Shen, A. Boes, J. D. Peters, W. Jin, C. Xiang, S. Liu, G. Moille, S.-P. Yu, X. Wang, K. Srinivasan, S. B. Papp, K. Vahala, J. E. Bowers. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Commun., 11, 1331(2020).

    [21] A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, M. R. Watts. Ultralow-loss silicon ring resonators. Opt. Lett., 37, 4236-4238(2012).

    [22] S. A. Miller, M. Yu, X. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, M. Lipson. Low-loss silicon platform for broadband mid-infrared photonics. Optica, 4, 707-712(2017).

    [23] X. Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh, K. Vahala. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica, 2, 1078-1085(2015).

    [24] M.-G. Suh, K. Vahala. Gigahertz-repetition-rate soliton microcombs. Optica, 5, 65-66(2018).

    [25] G. Li, P. Liu, X. Jiang, C. Yang, J. Ma, H. Wu, M. Xiao. High-Q silica microdisk optical resonators with large wedge angles on a silicon chip. Photon. Res., 3, 279-282(2015).

    [26] J. Ma, L. Xiao, J. Gu, H. Li, X. Cheng, G. He, X. Jiang, M. Xiao. Visible Kerr comb generation in a high-Q silica microdisk resonator with a large wedge angle. Photon. Res., 7, 573-578(2019).

    [27] C. Pyrlik, J. Schlegel, F. Böhm, A. Thies, O. Krüger, O. Benson, A. Wicht, G. Tränkle. Integrated thermal silica micro-resonator waveguide system with ultra-low fluorescence. IEEE Photon. Technol. Lett., 31, 479-482(2019).

    [28] X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, O. Painter. High-Q double-disk microcavities for cavity optomechanics. Opt. Express, 17, 20911-20919(2009).

    [29] T. Uchida. Application of radio-frequency discharged plasma produced in closed magnetic neutral line for plasma processing. Jpn. J. Appl. Phys., 33, L43-L44(1994).

    [30] T. Uchida, S. Hamaguchi. Magnetic neutral loop discharge (NLD) plasmas for surface processing. J. Phys. D, 41, 083001(2008).

    [31] M. Cai, O. Painter, K. J. Vahala. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett., 85, 74-77(2000).

    [32] T. Carmon, L. Yang, K. J. Vahala. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express, 12, 4742-4750(2004).

    [33] T. Kippenberg, S. Spillane, K. Vahala. Modal coupling in traveling-wave resonators. Opt. Lett., 27, 1669-1671(2002).

    [34] M. L. Gorodetsky, A. D. Pryamikov, V. S. Ilchenko. Rayleigh scattering in high-Q microspheres. J. Opt. Soc. Am. B, 17, 1051-1057(2000).

    [35] A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, L. Maleki. Optical resonators with ten million finesse. Opt. Express, 15, 6768-6773(2007).

    [36] C. Dong, C. Zou, J. Cui, Y. Yang, Z. Han, G. Guo. Ringing phenomenon in silica microspheres. Chin. Opt. Lett., 7, 299-301(2009).

    [37] K. Y. Yang, K. Beha, D. C. Cole, X. Yi, P. Del’Haye, H. Lee, J. Li, D. Y. Oh, S. A. Diddams, S. B. Papp, K. J. Vahala. Broadband dispersion-engineered microresonator on a chip. Nat. Photonics, 10, 316-320(2016).

    [38] H. Lee, T. Chen, J. Li, O. Painter, K. J. Vahala. Ultra-low-loss optical delay line on a silicon chip. Nat. Commun., 3, 867(2012).

    CLP Journals

    [1] Xiaobao Zhang, Guoping Lin, Tang Sun, Qinghai Song, Guangzong Xiao, Hui Luo, "Dispersion engineering and measurement in crystalline microresonators using a fiber ring etalon," Photonics Res. 9, 2222 (2021)

    Tools

    Get Citation

    Copy Citation Text

    Jiaxin Gu, Jie Liu, Ziqi Bai, Han Wang, Xinyu Cheng, Guanyu Li, Menghua Zhang, Xinxin Li, Qi Shi, Min Xiao, Xiaoshun Jiang, "Dry-etched ultrahigh-Q silica microdisk resonators on a silicon chip," Photonics Res. 9, 722 (2021)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Integrated Optics

    Received: Oct. 19, 2020

    Accepted: Feb. 11, 2021

    Published Online: Apr. 26, 2021

    The Author Email: Xiaoshun Jiang (jxs@nju.edu.cn)

    DOI:10.1364/PRJ.412840

    Topics