Chinese Optics, Volume. 18, Issue 1, 42(2025)

Structured light surface shape measurement method for highly reflective surfaces

Yun WANG1, Jian-ying GUO1, Jun-zhe LIANG2, Feng ZHU1, Guang-xi CHEN1, Mao-dong REN3, and Jin LIANG1、*
Author Affiliations
  • 1State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
  • 2School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049,China
  • 3Innovation Lab, XTOP 3D Technology (Shenzhen) Co. Ltd., Shenzhen 518060, China
  • show less
    Figures & Tables(17)
    Measurement system model for monocular structured light
    Reflection model of highly reflective surface
    Fringe images captured under different exposures. (a) Low exposure image; (b) high exposure image
    Luminance distribution on an aluminum alloy metal plate. (a) Camera captured image; (b) HDR composite image
    Response curve of the camera
    Cluster segmentation results of irradiance image
    Exposure time prediction algorithm based on irradiance segmentation
    Experimental scene
    Response curve of the camera and the irradiance distribution image. (a) Camera response curve; (b) irradiance image; (c) distribution curve of gray scale and irradiance in a specific line; (d) gray-scale variation curves of different points
    Cluster segmentation results of the irradiance image
    Phase and point cloud processing results of different methods. (a) Phase pictures obtained by different methods; (b) point cloud data of PMP method; (c) phase error of the 900th line obtained by different methods; (d) point cloud data of the proposed method
    Deviation results of point cloud reconstruction by different methods
    Processing results of brake disc (a)−(c) and sheet metal workpiece (d)−(f)
    • Table 1. The steps of the FCM algorithm in this paper

      View table
      View in Article

      Table 1. The steps of the FCM algorithm in this paper

      算法1 高斯度量下的模糊C均值聚类算法
      输入: 数据集 ${\mathbf{X}} = \{ {x_1},{x_2},\cdots,{x_L}\} $, 聚类数量 $K$, 最大迭代次数 $T = 50$,收敛阈值$\varepsilon = {10^{ - 6}}$, 正则化系数 $\gamma = 0.2$.
      输出: 隶属度矩阵 $ {\boldsymbol{U}} = \{ {u_{ij}}\} $ #数据点${x_i}$对聚类中心${c_j}$的隶属度聚类中心矩阵 $ {\boldsymbol{C}} = \{ {c_1},{c_2},...,{c_K}\} $.
      1:使用欧式距离度量下的模糊C均值聚类方法初始化隶属度矩阵${\boldsymbol{U}^{(o)}}$,聚类中心矩阵${\boldsymbol{C}^{(o)}}$, 和协方差矩阵$ {\boldsymbol{\Sigma }^{(o)}} $
      2:对于每一轮迭代,执行以下步骤直到收敛或达到最大迭代次数:
        a. 根据式(9)计算每个数据点到所有聚类中心的距离
        b. 根据距离更新隶属度矩阵 ${\boldsymbol{U}}$:    ${{\boldsymbol{u}}_{ij}} = - \Phi ({{\boldsymbol{x}}_j}|{{\boldsymbol{c}}_i},{{\boldsymbol{\Sigma}} _i})/2\gamma $  c. 更新聚类中心矩阵${\mathbf{C}}$:    $ {{\boldsymbol{c}}_i} = \displaystyle\sum\limits_{j = 1}^L {{{\boldsymbol{u}}_{ij}}{{\boldsymbol{x}}_j}} /\displaystyle\sum\limits_{j = 1}^L {{{\boldsymbol{u}}_{ij}}} $  d. 更新协方差矩阵$ {\boldsymbol{\Sigma }} $:    $ {{\boldsymbol{\Sigma}} _i} = \left[ {\displaystyle\sum\limits_{j = 1}^L {{{\boldsymbol{u}}_{ij}}{{({{\boldsymbol{x}}_j} - {{\boldsymbol{c}}_i})}^{\mathrm{T}}}} ({{\boldsymbol{x}}_j} - {{\boldsymbol{c}}_i})} \right]/\displaystyle\sum\limits_{j = 1}^L {{{\boldsymbol{u}}_{ij}}} $  e. 检测终止条件    计算聚类中心的变化量是否小于收敛阈值$\varepsilon $    如果变化量小于$\varepsilon $或得到最大迭代次数$T$,则停止迭代
      3:输出最终的聚类中心矩阵 ${\boldsymbol{C}}$ 和隶属度矩阵 ${\boldsymbol{U}}$
    • Table 2. Main parameters of monocular structured light system

      View table
      View in Article

      Table 2. Main parameters of monocular structured light system

      性能参数参数值
      相机分辨率2448(H)×2048(V)
      投影仪分辨率1028(H)×720(V)
      测量幅面大小/mm400×300
      标准测距/mm630
      曝光时间调节范围/ms0~640
      投射光源蓝光LED
    • Table 3. Exposure time series of different methods (unit: ms)

      View table
      View in Article

      Table 3. Exposure time series of different methods (unit: ms)

      曝光次数PMP文献[14]算法文献[15]算法本文算法
      11002.691.580.75
      2-15.5010.1322.92
      3-109.73102.6959.19
      4-162.21269.32113.22
      5-203.36469.32231.11
    • Table 4. Results obtained by different clustering numbers

      View table
      View in Article

      Table 4. Results obtained by different clustering numbers

      聚类数量点云数量最大偏差/mm标准偏差/mmRMS/mm计算时间/s
      35321582.28170.07280.083953.08
      45749991.49900.03210.053285.47
      56049780.47890.01880.0332130.81
      66566880.36120.01820.0303201.33
      76800960.30100.01740.0293294.54
    Tools

    Get Citation

    Copy Citation Text

    Yun WANG, Jian-ying GUO, Jun-zhe LIANG, Feng ZHU, Guang-xi CHEN, Mao-dong REN, Jin LIANG. Structured light surface shape measurement method for highly reflective surfaces[J]. Chinese Optics, 2025, 18(1): 42

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 10, 2024

    Accepted: Sep. 3, 2024

    Published Online: Mar. 14, 2025

    The Author Email:

    DOI:10.37188/CO.2024-0087

    Topics