Chinese Journal of Lasers, Volume. 49, Issue 10, 1002502(2022)
Application of Ultrashort Pulse Laser Manufacturing in Microelectrical/Optical Interconnection
[1] Xu B B, Zhang D D, Liu X Q et al. Fabrication of microelectrodes based on precursor doped with metal seeds by femtosecond laser direct writing[J]. Optics Letters, 39, 434-437(2014).
[2] Xu B B, Zhang R, Wang H et al. Laser patterning of conductive gold micronanostructures from nanodots[J]. Nanoscale, 4, 6955-6958(2012).
[3] Marshall G D, Politi A, Matthews J C F et al. Laser written waveguide photonic quantum circuits[J]. Optics Express, 17, 12546-12554(2009).
[4] Garnett E C, Cai W S, Cha J J et al. Self-limited plasmonic welding of silver nanowire junctions[J]. Nature Materials, 11, 241-249(2012).
[5] Han S, Hong S, Ham J et al. Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics[J]. Advanced Materials, 26, 5808-5814(2014).
[6] Lin L C, Liu L, Musselman K et al. Plasmonic-radiation-enhanced metal oxide nanowire heterojunctions for controllable multilevel memory[J]. Advanced Functional Materials, 26, 5979-5986(2016).
[8] Gu Z C, Amemiya T, Ishikawa A et al. Optical transmission between III-V chips on Si using photonic wire bonding[J]. Optics Express, 23, 22394-22403(2015).
[9] Kowalevicz A M, Sharma V, Ippen E P et al. Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator[J]. Optics Letters, 30, 1060-1062(2005).
[10] Cui J L, Cheng Y, Zhang J W et al. Femtosecond laser irradiation of carbon nanotubes to metal electrodes[J]. Applied Sciences, 9, 476(2019).
[11] Elles C G, Shkrob I A, Crowell R A et al. Excited state dynamics of liquid water: insight from the dissociation reaction following two-photon excitation[J]. The Journal of Chemical Physics, 126, 164503(2007).
[12] Lin L C, Liu L, Peng P et al. In situ nanojoining of Y- and T-shaped silver nanowires structures using femtosecond laser radiation[J]. Nanotechnology, 27, 125201(2016).
[13] Ren X Y, Cui J L, Lu Y et al. Research progress on electrical/mechanical properties of interconnection structures based on nanowelding[J]. Chinese Journal of Lasers, 48, 0802021(2021).
[14] Serbin J, Egbert A, Ostendorf A et al. Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics[J]. Optics Letters, 28, 301-303(2003).
[15] Dey G R, El Omar A K, Jacob J A et al. Mechanism of trivalent gold reduction and reactivity of transient divalent and monovalent gold ions studied by gamma and pulse radiolysis[J]. The Journal of Physical Chemistry A, 115, 383-391(2011).
[16] Belloni J, Mostafavi M, Remita H et al. Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids[J]. New Journal of Chemistry, 22, 1239-1255(1998).
[17] Li C, Hu J, Jiang L et al. Shaped femtosecond laser induced photoreduction for highly controllable Au nanoparticles based on localized field enhancement and their SERS applications[J]. Nanophotonics, 9, 691-702(2020).
[18] Tanaka T, Ishikawa A, Kawata S. Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure[J]. Applied Physics Letters, 88, 081107(2006).
[19] Ishikawa A, Tanaka T, Kawata S. Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye[J]. Applied Physics Letters, 89, 113102(2006).
[20] Cao Y Y, Takeyasu N, Tanaka T et al. 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction[J]. Small, 5, 1144-1148(2009).
[21] Cao Y Y, Dong X Z, Takeyasu N et al. Morphology and size dependence of silver microstructures in fatty salts-assisted multiphoton photoreduction microfabrication[J]. Applied Physics A, 96, 453-458(2009).
[22] Lu W E, Zhang Y L, Zheng M L et al. Femtosecond direct laser writing of gold nanostructures by ionic liquid assisted multiphoton photoreduction[J]. Optical Materials Express, 3, 1660-1673(2013).
[23] Ren X L, Zheng M L, Jin F et al. Laser direct writing of silver nanowire with amino acids-assisted multiphoton photoreduction[J]. The Journal of Physical Chemistry C, 120, 26532-26538(2016).
[24] Xu B B, Xia H, Niu L G et al. Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating[J]. Small, 6, 1762-1766(2010).
[25] Nakamura R, Hitomi M, Kinashi K et al. Two-photon excitation by femtosecond laser in poly(N-vinylpyrrolidone) matrix doped with silver ions[J]. Chemical Physics Letters, 558, 62-65(2013).
[26] Baldacchini T, Pons A C, Pons J et al. Multiphoton laser direct writing of two-dimensional silver structures[J]. Optics Express, 13, 1275-1280(2005).
[27] Maruo S, Saeki T. Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix[J]. Optics Express, 16, 1174-1179(2008).
[28] Shukla S, Vidal X, Furlani E P et al. Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction[J]. ACS Nano, 5, 1947-1957(2011).
[29] Blasco E, Müller J, Müller P et al. Fabrication of conductive 3D gold-containing microstructures via direct laser writing[J]. Advanced Materials, 28, 3592-3595(2016).
[30] Hu Q, Sun X Z, Parmenter C D J et al. Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction[J]. Scientific Reports, 7, 17150(2017).
[31] Wang H, Liu S, Zhang Y L et al. Controllable assembly of silver nanoparticles induced by femtosecond laser direct writing[J]. Science and Technology of Advanced Materials, 16, 024805(2015).
[32] Chen Z Y, Fang G, Cao L C et al. Direct writing of silver micro-nanostructures by femtosecond laser tweezer[J]. Chinese Journal of Lasers, 45, 0402006(2018).
[33] Urban A S, Lutich A A, Stefani F D et al. Laser printing single gold nanoparticles[J]. Nano Letters, 10, 4794-4798(2010).
[34] Bahns J T, Sankaranarayanan S K R S, Giebink N C et al. Optically directed mesoscale assembly and patterning of electrically conductive organic-inorganic hybrid structures[J]. Advanced Materials, 24, OP242-OP246(2012).
[35] Son Y, Yeo J, Ha C W et al. Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning[J]. Thermochimica Acta, 542, 52-56(2012).
[36] Huang H, Sivayoganathan M, Duley W W et al. High integrity interconnection of silver submicron/nanoparticles on silicon wafer by femtosecond laser irradiation[J]. Nanotechnology, 26, 025303(2015).
[37] Huang H, Sivayoganathan M, Duley W W et al. Efficient localized heating of silver nanoparticles by low-fluence femtosecond laser pulses[J]. Applied Surface Science, 331, 392-398(2015).
[38] Son Y, Yeo J, Moon H et al. Nanoscale electronics: digital fabrication by direct femtosecond laser processing of metal nanoparticles[J]. Advanced Materials, 23, 3176-3181(2011).
[39] Noh J, Kim D. Femtosecond laser sintering of silver nanoparticles for conductive thin-film fabrication[J]. Applied Physics A, 126, 124(2020).
[40] Mizoshiri M, Arakane S, Sakurai J et al. Direct writing of Cu-based micro-temperature detectors using femtosecond laser reduction of CuO nanoparticles[J]. Applied Physics Express, 9, 036701(2016).
[41] Mizoshiri M, Hata S. Selective fabrication of p-type and n-type thermoelectric micropatterns by the reduction of CuO/NiO mixed nanoparticles using femtosecond laser pulses[J]. Applied Physics A, 124, 64(2017).
[42] Liao J N, Wang X D, Zhou X W et al. Joining process of copper nanoparticles with femtosecond laser irradiation[J]. Chinese Journal of Lasers, 48, 0802008(2021).
[43] Huang Y J, Xie X Z, Li M N et al. Copper circuits fabricated on flexible polymer substrates by a high repetition rate femtosecond laser-induced selective local reduction of copper oxide nanoparticles[J]. Optics Express, 29, 4453-4463(2021).
[44] Mizoshiri M, Yoshidomi K. Cu patterning using femtosecond laser reductive sintering of CuO nanoparticles under inert gas injection[J]. Materials, 14, 3285(2021).
[45] Ding K W, Wang C, Luo Z et al. Principle and method of ultrafast laser beam shaping and its application in functional microstructure fabrication[J]. Chinese Journal of Lasers, 48, 0202005(2021).
[46] Kong D J, Sun X Y, Dong Z L et al. Progress in femtosecond laser processing technology based on space beam shaping[J]. Laser & Optoelectronics Progress, 57, 111416(2020).
[47] Liu Y, Zhang J M, Gao H et al. Capillary-force-induced cold welding in silver-nanowire-based flexible transparent electrodes[J]. Nano Letters, 17, 1090-1096(2017).
[48] Hu H, Wang Z Y, Ye Q X et al. Substrateless welding of self-assembled silver nanowires at air/water interface[J]. ACS Applied Materials & Interfaces, 8, 20483-20490(2016).
[49] Huang Y L, Tian Y H, Hang C J et al. Self-limited nanosoldering of silver nanowires for high-performance flexible transparent heaters[J]. ACS Applied Materials & Interfaces, 11, 21850-21858(2019).
[50] Ha J, Lee B J, Hwang D J et al. Femtosecond laser nanowelding of silver nanowires for transparent conductive electrodes[J]. RSC Advances, 6, 86232-86239(2016).
[51] Hu Y W, Liang C, Sun X Y et al. Enhancement of the conductivity and uniformity of silver nanowire flexible transparent conductive films by femtosecond laser-induced nanowelding[J]. Nanomaterials, 9, 673(2019).
[52] Liang C, Sun X Y, Zheng J F et al. Surface ablation thresholds of femtosecond laser micropatterning silver nanowires network on flexible substrate[J]. Microelectronic Engineering, 232, 111396(2020).
[53] Ghenuche P, Cherukulappurath S, Taminiau T H et al. Spectroscopic mode mapping of resonant plasmon nanoantennas[J]. Physical Review Letters, 101, 116805(2008).
[54] Liu L, Peng P, Hu A M et al. Highly localized heat generation by femtosecond laser induced plasmon excitation in Ag nanowires[J]. Applied Physics Letters, 102, 073107(2013).
[55] Hu A, Deng G L, Courvoisier S et al. Femtosecond laser induced surface melting and nanojoining for plasmonic circuits[J]. Proceedings of SPIE, 8809, 880907(2013).
[56] Lin L, Huang H, Sivayoganathan M et al. Assembly of silver nanoparticles on nanowires into ordered nanostructures with femtosecond laser radiation[J]. Applied Optics, 54, 2524-2531(2015).
[57] Liang C, Sun X Y, Su W M et al. Fast welding of silver nanowires for flexible transparent conductive film by spatial light modulated femtosecond laser[J]. Advanced Engineering Materials, 23, 2100584(2021).
[58] Xiao Y, Huo J P, Sun T M et al. Nanojoining of p-type copper oxide nanowires using femtosecond laser[J]. Chinese Journal of Lasers, 48, 0802005(2021).
[59] Xing S L, Lin L C, Zou G S et al. Two-photon absorption induced nanowelding for assembling ZnO nanowires with enhanced photoelectrical properties[J]. Applied Physics Letters, 115, 103101(2019).
[60] Lin L C, Zou G S, Liu L et al. Plasmonic engineering of metal-oxide nanowire heterojunctions in integrated nanowire rectification units[J]. Applied Physics Letters, 108, 203107(2016).
[61] Xiao M, Lin L, Xing S et al. Nanojoining and tailoring of current-voltage characteristics of metal-p type semiconductor nanowire heterojunction by femtosecond laser irradiation[J]. Journal of Applied Physics, 127, 184901(2020).
[62] Feng J Y, Tian Y H, Wang S M et al. Femtosecond laser irradiation induced heterojunctions between carbon nanofibers and silver nanowires for a flexible strain sensor[J]. Journal of Materials Science & Technology, 84, 139-146(2021).
[63] Xing S L, Lin L C, Zou G S et al. Improving the electrical contact at a Pt/TiO2 nanowire interface by selective application of focused femtosecond laser irradiation[J]. Nanotechnology, 28, 405302(2017).
[64] Deng Y B, Bai Y F, Yu Y C et al. Laser nanojoining of copper nanowires[J]. Journal of Laser Applications, 31, 022414(2019).
[65] Yu Y C, Deng Y B, Al Hasan M A et al. Femtosecond laser-induced non-thermal welding for a single Cu nanowire glucose sensor[J]. Nanoscale Advances, 2, 1195-1205(2020).
[66] Xing S L, Lin L C, Huo J P et al. Plasmon-induced heterointerface thinning for Schottky barrier modification of core/shell SiC/SiO2 nanowires[J]. ACS Applied Materials & Interfaces, 11, 9326-9332(2019).
[67] Lin L C, Huo J P, Peng P et al. Contact engineering of single core/shell SiC/SiO2 nanowire memory unit with high current tolerance using focused femtosecond laser irradiation[J]. Nanoscale, 12, 5618-5626(2020).
[68] Sun T M, Xiao Y, Huo J P et al. Nanojoining and electrical performance modulation of metal oxide nanowires based on femtosecond laser irradiation[J]. Chinese Journal of Lasers, 48, 0802006(2021).
[69] Mei H H, Cheng Y, Wang H J et al. Femtosecond laser-induced interconnection of multi-walled carbon nanotubes[J]. Ferroelectrics, 548, 50-59(2019).
[70] Mei H H, Cui J L, Cheng Y et al. Heterogeneous connection of carbon nanotubes with metal electrodes and its electrical properties[J]. Chinese Journal of Lasers, 48, 0802023(2021).
[71] He Y, Zhu L, Liu Y et al. Femtosecond laser direct writing of flexible all-reduced graphene oxide FET[J]. IEEE Photonics Technology Letters, 28, 1996-1999(2016).
[72] Lim C H J, Sandeep C S S, Murukeshan V M et al. Direct laser writing of graphene-based electrical interconnects for printed circuit board repair[J]. Advanced Materials Technologies, 6, 2100514(2021).
[73] Davis K M, Miura K, Sugimoto N et al. Writing waveguides in glass with a femtosecond laser[J]. Optics Letters, 21, 1729-1731(1996).
[74] Homoelle D, Wielandy S, Gaeta A L et al. Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses[J]. Optics Letters, 24, 1311-1313(1999).
[75] Minoshima K, Kowalevicz A M, Hartl I et al. Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator[J]. Optics Letters, 26, 1516-1518(2001).
[76] Hiramatsu S, Mikawa T, Ibaragi O et al. Laser-written optical-path redirected waveguide device for optical back-plane interconnects[J]. IEEE Photonics Technology Letters, 16, 2075-2077(2004).
[77] Nasu Y, Kohtoku M, Hibino Y. Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit[J]. Optics Letters, 30, 723-725(2005).
[78] Nasu Y, Kohtoku M, Hibino Y et al. Three-dimensional waveguide interconnection in planar lightwave circuits by direct writing with femtosecond laser[J]. Japanese Journal of Applied Physics, 44, L1446-L1448(2005).
[79] MacDonald J R, Thomson R R, Beecher S J et al. Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe[J]. Optics Letters, 35, 4036-4038(2010).
[80] Langer G, Satzinger V, Schmidt V et al. PCB with fully integrated optical interconnects[J]. Proceedings of SPIE, 7944, 794408(2011).
[81] Woods R, Feldbacher S, Zidar D et al. Development and characterization of optoelectronic circuit boards produced by two-photon polymerization using a polysiloxane containing acrylate functional groups[J]. Applied Optics, 52, 388-393(2013).
[82] Lindenmann N, Balthasar G, Hillerkuss D et al. Photonic wire bonding: a novel concept for chip-scale interconnects[J]. Optics Express, 20, 17667-17677(2012).
[83] Lindenmann N, Dottermusch S, Goedecke M L et al. Connecting silicon photonic circuits to multicore fibers by photonic wire bonding[J]. Journal of Lightwave Technology, 33, 755-760(2015).
[84] Billah M R, Blaicher M, Hoose T et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding[J]. Optica, 5, 876-883(2018).
[85] Xu M M, He R Y, Sun S Q et al. Femtosecond laser micromachined optical waveguides in LiTaO3 crystal[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 7, 1014-1017(2013).
[86] Li L Q, Nie W J, Li Z Q et al. Femtosecond laser writing of optical waveguides by self-induced multiple refocusing in LiTaO3 crystal[J]. Journal of Lightwave Technology, 37, 3452-3458(2019).
[87] Lü J M, Cheng Y Z, Lu Q M et al. Femtosecond laser written optical waveguides in z-cut MgO∶LiNbO3 crystal: fabrication and optical damage investigation[J]. Optical Materials, 57, 169-173(2016).
[88] He S, Yang Q X, Zhang B et al. A waveguide mode modulator based on femtosecond laser direct writing in KTN crystals[J]. Results in Physics, 18, 103307(2020).
[89] He R Y, An Q, Vázquez de Aldana J R et al. Femtosecond-laser micromachined optical waveguides in Bi4Ge3O12 crystals[J]. Applied Optics, 52, 3713-3718(2013).
[90] Nie W J, de Aldana J R V, Chen F. Dual-line optical waveguides in Cu∶KNSBN crystal fabricated by direct femtosecond laser writing[J]. Optical Engineering, 54, 097106(2015).
[91] Qi J, Wang P, Liao Y et al. Fabrication of polarization-independent single-mode waveguides in lithium niobate crystal with femtosecond laser pulses[J]. Optical Materials Express, 6, 2554-2559(2016).
[92] Zhang Q, Yang D, Qi J et al. Single scan femtosecond laser transverse writing of depressed cladding waveguides enabled by three-dimensional focal field engineering[J]. Optics Express, 25, 13263-13270(2017).
[93] Okhrimchuk A, Mezentsev V, Shestakov A et al. Low loss depressed cladding waveguide inscribed in YAG∶Nd single crystal by femtosecond laser pulses[J]. Optics Express, 20, 3832-3843(2012).
[94] Streltsov A M, Borrelli N F. Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses[J]. Optics Letters, 26, 42-43(2001).
[95] Minoshima K, Kowalevicz A, Ippen E et al. Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing[J]. Optics Express, 10, 645-652(2002).
[96] Suzuki K, Sharma V, Fujimoto J G et al. Characterization of symmetric [3×3] directional couplers fabricated by direct writing with a femtosecond laser oscillator[J]. Optics Express, 14, 2335-2343(2006).
[97] Skryabin N, Kalinkin A, Dyakonov I et al. Femtosecond laser written depressed-cladding waveguide 2×2, 1×2 and 3×3 directional couplers in Tm3+∶YAG crystal[J]. Micromachines, 11, 1(2019).
[98] Pospiech M, Emons M, Steinmann A et al. Double waveguide couplers produced by simultaneous femtosecond writing[J]. Optics Express, 17, 3555-3563(2009).
[99] Liu J R, Zhang Z Y, Chang S D et al. Directly writing of 1-to-N optical waveguide power splitters in fused silica glass using a femtosecond laser[J]. Optics Communications, 253, 315-319(2005).
[100] Lü J M, Cheng Y Z, Yuan W H et al. Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal[J]. Optical Materials Express, 5, 1274-1280(2015).
[101] Lü J M, Cheng Y Z, Vázquez de Aldana J R et al. Femtosecond laser writing of optical-lattice-like cladding structures for three-dimensional waveguide beam splitters in LiNbO3 crystal[J]. Journal of Lightwave Technology, 34, 3587-3591(2016).
[102] Ajates J G, Vázquez deAldana J R, Chen F et al. Three-dimensional beam-splitting transitions and numerical modelling of direct-laser-written near-infrared LiNbO3 cladding waveguides[J]. Optical Materials Express, 8, 1890-1901(2018).
[103] Cheng C, Romero C, de Aldana J R V et al. Superficial waveguide splitters fabricated by femtosecond laser writing of LiTaO3 crystal[J]. Optical Engineering, 54, 067113(2015).
[104] Ren Y Y, Zhang L M, Xing H G et al. Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti∶sapphire crystal[J]. Optics & Laser Technology, 103, 82-88(2018).
[105] Moughames J, Porte X, Larger L et al. 3D printed multimode-splitters for photonic interconnects[J]. Optical Materials Express, 10, 2952-2961(2020).
[106] Du G Q, Yang Q, Chen F et al. Direct fabrication of seamless roller molds with gapless and shaped-controlled concave microlens arrays[J]. Optics Letters, 37, 4404-4406(2012).
[107] Deng Z F, Yang Q, Chen F et al. Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining[J]. Optics Letters, 40, 1928-1931(2015).
[108] Han W N, Han Z H, Yuan Y P et al. Continuous control of microlens morphology on Si based on the polarization-dependent femtosecond laser induced periodic surface structures modulation[J]. Optics & Laser Technology, 119, 105629(2019).
[109] Qin B, Li X W, Yao Z L et al. Fabrication of microlenses with continuously variable numerical aperture through a temporally shaped femtosecond laser[J]. Optics Express, 29, 4596-4606(2021).
[110] Chen Q D, Wu D, Niu L G et al. Phase lenses and mirrors created by laser micronanofabrication via two-photon photopolymerization[J]. Applied Physics Letters, 91, 171105(2007).
[111] Sun X Y, Zhou F, Dong X R et al. Fabrication of GaAs micro-optical components using wet etching assisted femtosecond laser ablation[J]. Journal of Modern Optics, 67, 1516-1523(2020).
[112] Kim J, Ha W, Park J et al. Micro Fresnel zone plate lens inscribed on a hard polymer clad fiber using femtosecond pulsed laser[J]. IEEE Photonics Technology Letters, 25, 761-763(2013).
[113] Thomson R R, Bookey H T, Psaila N D et al. Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications[J]. Optics Express, 15, 11691-11697(2007).
[114] Thomson R R, Harris R J, Birks T A et al. Ultrafast laser inscription of a 121-waveguide fan-out for astrophotonics[J]. Optics Letters, 37, 2331-2333(2012).
[115] van Uden R G H, Correa R A, Lopez E A et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre[J]. Nature Photonics, 8, 865-870(2014).
[116] Gissibl T, Thiele S, Herkommer A et al. Two-photon direct laser writing of ultracompact multi-lens objectives[J]. Nature Photonics, 10, 554-560(2016).
Get Citation
Copy Citation Text
Xiaoyan Sun, Chang Liang, Wei Zhang, Dejian Kong, Yuting Feng, Youwang Hu, Ji’an Duan. Application of Ultrashort Pulse Laser Manufacturing in Microelectrical/Optical Interconnection[J]. Chinese Journal of Lasers, 2022, 49(10): 1002502
Received: Dec. 1, 2021
Accepted: Jan. 19, 2022
Published Online: May. 9, 2022
The Author Email: Hu Youwang (huyw@csu.edu.cn)