Laser & Optoelectronics Progress, Volume. 57, Issue 4, 041506(2020)

Pose Estimation of Curved Objects Based on Binocular Vision and Vectors of the Tangent Plane

Yuzhen Liu1, Jiarong Zhang1、*, and Sen Lin1,2,3
Author Affiliations
  • 1School of Electronic and Information Engineering, Liaoning Technical University, Huludao, Liaoning 125105, China
  • 2State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
  • 3Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
  • show less
    Figures & Tables(20)
    Binocular vision measurement system model
    Conversion from depth map to point cloud. (a) Depth map; (b) point cloud
    Schematic of rotation of 3D coordinate system. (a) Rotate around X axis; (b) rotate around Y axis; (c) rotate around Z axis
    Position representation of spatial point in world coordinate system
    Pose transformation of curved object
    Flow chart of the algorithm
    Experimental environment
    Experimental object. (a) Object 1; (b) object 2; (c) object 3; (d) object 4
    Selected target corner points
    Comparison of measurement errors of our algorithm and three monocular visual pose algorithms. (a) X-axis translation error; (b) Y-axis translation error; (c) Z-axis translation error; (d) rotation error around the X-axis; (e) rotation error around the Y-axis; (f) rotation error around the Z-axis
    Average error percentage of our algorithm and three monocular visual pose algorithms
    Comparison of measurement errors of our algorithm and two binocular visual pose algorithms. (a) X-axis translation error; (b) Y-axis translation error; (c) Z-axis translation error; (d) rotation error around the X-axis; (e) rotation error around the Y-axis; (f) rotation error around the Z-axis
    Average error percentage of our algorithm and two binocular visual pose algorithms
    • Table 1. Estimation results of object 1 pose change

      View table

      Table 1. Estimation results of object 1 pose change

      Data categoryTranslation /cmRotation angle /(°)
      txtytzϕθψ
      Ground truth5.00004.500010.00000.000010.000010.0000
      Estimated value6.62074.062611.39334.24429.922110.3074
      Estimation error1.62070.43741.39334.24420.07790.3074
      Average error1.15051.5432
    • Table 2. Estimation results of object 2 pose change

      View table

      Table 2. Estimation results of object 2 pose change

      Data categoryTranslation /cmRotation angle /(°)
      txtytzϕθψ
      Ground truth10.00004.50000.00005.00000.00000.0000
      Estimated value11.36644.84670.75674.05350.59140.7830
      Estimation error1.36640.34670.75670.94650.59140.7830
      Average error0.82330.7736
    • Table 3. Estimation results of object 3 pose change

      View table

      Table 3. Estimation results of object 3 pose change

      Data categoryTranslation /cmRotation angle /(°)
      txtytzϕθψ
      Ground truth5.00000.000010.00000.000020.00000.0000
      Estimated value6.18030.197711.73004.739719.58831.8791
      Estimation error1.18030.19771.73004.73970.41171.8791
      Average error1.03602.3435
    • Table 4. Estimation results of object 4 pose change

      View table

      Table 4. Estimation results of object 4 pose change

      Data categoryTranslation /cmRotation angle /(°)
      txtytzϕθψ
      Ground truth0.00000.000010.00005.00000.00000.0000
      Estimated value0.48500.032710.05333.36280.86922.2322
      Estimation error0.48500.03270.05331.63720.86922.2322
      Average error0.19031.5795
    • Table 5. Mean estimation error of each object

      View table

      Table 5. Mean estimation error of each object

      ObjectTranslation /cmRotation angle /(°)
      11.15051.5432
      20.82330.7736
      31.03602.3435
      40.19031.5795
    • Table 6. Comparison of calculation efficiency between COPE and ICP algorithm

      View table

      Table 6. Comparison of calculation efficiency between COPE and ICP algorithm

      AlgorithmRunning time /ms
      otxotyotzoϕoθoψ
      COPE11.808.408.208.508.508.75
      ICP595.00382.20408.40536.00618.00621.00
      Increased percentage /%98.0297.8097.9998.4198.6298.59
      Average improved efficiency /%98.24
    • Table 7. Comparison of calculation efficiency between COPE and NDT algorithm

      View table

      Table 7. Comparison of calculation efficiency between COPE and NDT algorithm

      AlgorithmRunning time /ms
      otxotyotzoϕoθoψ
      NDT210.00305.00429.20614.00570.00640.00
      Increased percentage /%94.3897.2598.0998.6298.5198.63
      Average improved efficiency /%97.58
    Tools

    Get Citation

    Copy Citation Text

    Yuzhen Liu, Jiarong Zhang, Sen Lin. Pose Estimation of Curved Objects Based on Binocular Vision and Vectors of the Tangent Plane[J]. Laser & Optoelectronics Progress, 2020, 57(4): 041506

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Jun. 26, 2019

    Accepted: Aug. 5, 2019

    Published Online: Feb. 20, 2020

    The Author Email: Jiarong Zhang (zjr0613@163.com)

    DOI:10.3788/LOP57.041506

    Topics