Acta Optica Sinica, Volume. 42, Issue 14, 1415002(2022)
Visual SLAM Method Based on Optical Flow and Instance Segmentation for Dynamic Scenes
[1] Alcantarilla P F, Yebes J J, Almazán J et al. On combining visual SLAM and dense scene flow to increase the robustness of localization and mapping in dynamic environments[C], 1290-1297(2012).
[2] Kerl C, Sturm J, Cremers D. Robust odometry estimation for RGB-D cameras[C], 3748-3754(2013).
[3] Wei T, Liu H M, Dong Z L et al. Robust monocular SLAM in dynamic environments[C], 209-218(2013).
[4] Li S L, Lee D. RGB-D SLAM in dynamic environments using static point weighting[J]. IEEE Robotics and Automation Letters, 2, 2263-2270(2017).
[5] Sun Y X, Liu M, Meng M Q H. Improving RGB-D SLAM in dynamic environments: a motion removal approach[J]. Robotics and Autonomous Systems, 89, 110-122(2017).
[6] Zhang L, Xu X B, Cao C F et al. Robot pose estimation method based on image and point cloud fusion with dynamic feature elimination[J]. Chinese Journal of Lasers, 49, 0610001(2022).
[7] Bescos B, Fácil J M, Civera J et al. DynaSLAM: tracking, mapping, and inpainting in dynamic scenes[J]. IEEE Robotics and Automation Letters, 3, 4076-4083(2018).
[8] Zhong F W, Wang S, Zhang Z Q et al. Detect-SLAM: making object detection and SLAM mutually beneficial[C], 1001-1010(2018).
[9] Yu C, Liu Z X, Liu X J et al. DS-SLAM: a semantic visual SLAM towards dynamic environments[C], 1168-1174(2018).
[10] Wang S, Lü X D, Li J B et al. Coarse semantic-based motion removal for robust mapping in dynamic environments[J]. IEEE Access, 8, 74048-74064(2020).
[11] Xu X S, Zeng Y. Visual simultaneous localization and mapping algorithm based on dynamic target detection[J]. Laser & Optoelectronics Progress, 58, 1615003(2021).
[12] Lu J, Liu Y H, Zhang R F. Semantic-based visual odometry towards dynamic scenes[J]. Laser & Optoelectronics Progress, 58, 0611001(2021).
[13] Bolya D, Zhou C, Xiao F Y et al. YOLACT++ better real-time instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 1108-1121(2022).
[14] Zhao S Y, Sheng Y L, Dong Y et al. MaskFlownet: asymmetric feature matching with learnable occlusion mask[C], 6277-6286(2020).
[15] Canny J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 679-698(1986).
[16] Telea A. An image inpainting technique based on the fast marching method[J]. Journal of Graphics Tools, 9, 23-34(2004).
[17] Sethian J A, Vladimirsky A. Fast methods for the Eikonal and related Hamilton-Jacobi equations on unstructured meshes[J]. Proceedings of the National Academy of Sciences of the United States of America, 97, 5699-5703(2000).
[18] Bolya D, Zhou C, Xiao F Y et al. YOLACT: real-time instance segmentation[C], 9156-9165(2019).
[19] Cui L Y, Ma C W. SOF-SLAM: a semantic visual SLAM for dynamic environments[J]. IEEE Access, 7, 166528-166539(2019).
Get Citation
Copy Citation Text
Chen Xu, Yijun Zhou, Chen Luo. Visual SLAM Method Based on Optical Flow and Instance Segmentation for Dynamic Scenes[J]. Acta Optica Sinica, 2022, 42(14): 1415002
Category: Machine Vision
Received: Nov. 30, 2021
Accepted: Jan. 24, 2022
Published Online: Jul. 15, 2022
The Author Email: Luo Chen (chenluo@seu.edu.cn)