Acta Optica Sinica, Volume. 42, Issue 14, 1415002(2022)

Visual SLAM Method Based on Optical Flow and Instance Segmentation for Dynamic Scenes

Chen Xu, Yijun Zhou, and Chen Luo*
Author Affiliations
  • School of Mechanical Engineering, Southeast University, Nanjing 211189, Jiangsu , China
  • show less
    Figures & Tables(24)
    System framework
    Epipolar geometry constraints
    Dynamic region detection of optical flow field direction. (a) Visualization of vector direction of original optical flow field; (b) visualization of vector direction of optical flow field after transformation; (c) edge of optical flow field vector direction; (d) instantaneous centre of velocity
    Velocity instantaneous centre positions. (a) Occupying two quadrants; (b) occupying single quadrant; (c) occupying four quadrants; (d) occupying two quadrants and their boundaries; (e) occupying single quadrant and its boundaries
    Dynamic region mask in optical flow direction. (a) Edge of optical flow field vector direction; (b) result of edge open operation; (c) dynamic region mask
    Flow chart of dynamic region detection algorithm based on optical flow direction
    Depth images. (a) Original depth map; (b) depth map after inpainting
    Diagram of depth image inpainting
    Dynamic region detection based on optical flow field amplitude. (a) Original optical flow; (b) optical flow of camera motion; (c) optical flow of dynamic objects; (d) dynamic region mask
    Flow chart of dynamic region detection algorithm based on optical flow field amplitude
    MaskFlownet-S network structure
    YOLACT network structure
    Trajectory and error of TUM. (a) (b) Trajectory and error of ORB-SLAM2; (c) (d) trajectory and error of proposed algorithm
    Trajectory and error of TUM. (a) (b) Trajectory and error of ORB-SLAM2; (c) (d) trajectory and error of proposed algorithm
    Trajectory and error of KITTI. (a) Sequence 01 of KITTI; (b) sequence 09 of KITTI
    • Table 1. ATE for TUM

      View table

      Table 1. ATE for TUM

      SequenceORB-SLAM2Ours
      RMSEMedianMeanSDRMSEMedianMeanSD
      fr3/s/hs0.02340.01700.01890.01380.01620.01280.01410.0079
      fr3/s/rpy0.02230.01220.01690.01460.01800.01090.01420.0112
      fr3/s/static0.00950.00750.00830.00460.00570.00430.00490.0030
      fr3/s/xyz0.00890.00710.00770.00440.00820.00600.00700.0044
      fr3/w/hs0.58120.48990.49090.31120.01860.01490.01630.0090
      fr3/w/rpy0.84160.63530.71470.44450.03200.02320.02610.0184
      fr3/w/static0.38440.33090.35900.13740.00780.00630.00690.0037
      fr3/w/xyz0.68670.54460.62090.29320.01450.01030.01210.0081
    • Table 2. Relative translation error of TUM

      View table

      Table 2. Relative translation error of TUM

      SequenceORB-SLAM2Ours
      RMSEMedianMeanSDRMSEMedianMeanSD
      fr3/s/hs0.00810.00580.00680.00450.01280.00900.01060.0071
      fr3/s/rpy0.01320.00750.00980.00890.01170.00750.00910.0073
      fr3/s/static0.00550.00410.00470.00280.00520.00400.00450.0026
      fr3/s/xyz0.00830.00670.00720.00420.00810.00640.00700.0041
      fr3/w/hs0.02420.01330.01860.01550.01350.00910.01100.0079
      fr3/w/rpy0.07150.01660.02400.06740.01820.01080.01390.0117
      fr3/w/static0.01780.00760.01190.01320.00630.00390.00480.0040
      fr3/w/xyz0.03720.01720.02240.02980.01230.00800.00990.0074
    • Table 3. Relative rotation error of TUM

      View table

      Table 3. Relative rotation error of TUM

      SequenceORB-SLAM2Ours
      RMSEMedianMeanSDRMSEMedianMeanSD
      fr3/s/hs0.36200.26260.31030.18640.40950.30640.35080.2113
      fr3/s/rpy0.40970.29470.33960.22910.40360.30130.34430.2108
      fr3/s/static0.16460.12040.14110.08480.16380.11900.13900.0867
      fr3/s/xyz0.31520.23540.26850.16510.31340.23610.26690.1643
      fr3/w/hs0.62170.41680.50340.36480.42810.30020.35690.2363
      fr3/w/rpy1.51270.43910.59851.38920.47850.32190.38580.2829
      fr3/w/static0.37190.20700.27290.25260.18150.12880.15200.0992
      fr3/w/xyz0.79200.42160.52100.59650.39020.23540.27940.2723
    • Table 4. Improvement of ATE for TUM

      View table

      Table 4. Improvement of ATE for TUM

      SequenceRMSEMedianMeanSD
      fr3/s/hs30.824.425.142.9
      fr3/s/rpy19.110.916.023.3
      fr3/s/static39.942.541.335.3
      fr3/s/xyz7.715.010.30
      fr3/w/hs96.897.096.797.1
      fr3/w/rpy96.296.396.395.9
      fr3/w/static98.098.198.197.3
      fr3/w/xyz97.998.198.197.2
    • Table 5. Improvement of relative translation error for TUM

      View table

      Table 5. Improvement of relative translation error for TUM

      SequenceRMSEMedianMeanSD
      fr3/s/hs-57.4-55.5-57.3-57.5
      fr3/s/rpy11.90.47.118.0
      fr3/s/static5.21.14.28.0
      fr3/s/xyz2.74.23.11.4
      fr3/w/hs44.131.640.849.2
      fr3/w/rpy74.634.842.082.7
      fr3/w/static64.748.359.869.3
      fr3/w/xyz66.953.655.975.1
    • Table 6. Improvement of relative rotation error for TUM

      View table

      Table 6. Improvement of relative rotation error for TUM

      SequenceRMSEMedianMeanSD
      fr3/s/hs-13.1-16.7-13.1-13.3
      fr3/s/rpy1.5-2.2-1.48.0
      fr3/s/static0.51.21.5-2.3
      fr3/s/xyz0.6-0.30.60.5
      fr3/w/hs31.128.029.135.2
      fr3/w/rpy68.426.735.579.6
      fr3/w/static51.237.844.360.7
      fr3/w/xyz50.744.246.454.3
    • Table 7. Comparison of RMSE of absolute trajectory for TUM

      View table

      Table 7. Comparison of RMSE of absolute trajectory for TUM

      SequenceDS-SLAMDyna-SLAMDetect-SLAMSOF-SLAMOurs
      fr3/s/hs0.01700.02310.0162
      fr3/s/rpy0.0180
      fr3/s/static0.00650.01000.0057
      fr3/s/xyz0.01500.02010.0082
      fr3/w/hs0.03030.02500.05140.02900.0186
      fr3/w/rpy0.44420.04000.29590.02700.0320
      fr3/w/static0.00810.00600.00700.0078
      fr3/w/xyz0.02470.01500.02410.01800.0145
    • Table 8. Comparison of test results on KITTI dataset

      View table

      Table 8. Comparison of test results on KITTI dataset

      SequenceORB-SLAM2DynaSLAMVDO-SLAMOurs
      RMSE of ATE /mRPEt /(m·frame-1RPEr /[(°)·frame-1

      RMSE of

      ATE /m

      RPEt /(m·frame-1RPEr /[(°)·frame-1

      RMSE of

      ATE /m

      RPEt /(m·frame-1RPEr /[(°)·frame-1

      RMSE of

      ATE /m

      RPEt /(m·frame-1RPEr /[(°)·frame-1
      001.300.040.061.400.040.060.050.051.240.020.06
      0110.400.050.049.400.050.040.120.049.030.050.04
      025.700.040.036.700.040.030.040.025.350.020.05
      030.600.070.040.600.070.040.090.040.590.020.04
      040.200.070.060.200.070.060.110.050.170.020.03
      050.800.060.030.800.060.030.100.020.770.010.04
      060.800.020.040.800.020.040.020.050.720.020.03
      070.500.050.070.500.050.070.460.010.04
      083.600.080.043.500.080.043.190.030.05
      093.200.060.051.600.060.051.570.020.05
      101.000.070.041.200.070.040.960.010.05
    • Table 9. Running time of each module

      View table

      Table 9. Running time of each module

      ModuleTime
      MaskFlownet-S27.6
      YOLACT++23.2
      Optical flow field direction mask8.1
      Optical flow field amplitude maskDepth image inpainting73.2
      Optical flow of static scene2.1
      K-means clustering10.8
    Tools

    Get Citation

    Copy Citation Text

    Chen Xu, Yijun Zhou, Chen Luo. Visual SLAM Method Based on Optical Flow and Instance Segmentation for Dynamic Scenes[J]. Acta Optica Sinica, 2022, 42(14): 1415002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Nov. 30, 2021

    Accepted: Jan. 24, 2022

    Published Online: Jul. 15, 2022

    The Author Email: Luo Chen (chenluo@seu.edu.cn)

    DOI:10.3788/AOS202242.1415002

    Topics