Chinese Journal of Lasers, Volume. 47, Issue 3, 301005(2020)
Design and Analysis of Inverse Polarization Grating Devices for Deep Ultraviolet Light
[1] Soufli R, Hudyma R M, Spiller E et al. Sub-diffraction-limited multilayer coatings for the 0.3 numerical aperture micro-exposure tool for extreme ultraviolet lithography[J]. Applied Optics, 46, 3736-3746(2007).
[2] Naulleau P P, Denham P E, Hoef B et al. A design study for synchrotron-based high-numerical-aperture scanning illuminators[J]. Optics Communications, 234, 53-62(2004).
[3] Yuan Q Y, Wang X Z, Qiu Z C. Impact of polarized illumination on high NA imaging in ArF immersion lithography at 45 nm node[J]. Optik, 120, 325-329(2009).
[4] Jiang J H, Li Y Q, Shen S H et al. Design of a high-numerical-aperture extreme ultraviolet lithography illumination system[J]. Applied Optics, 57, 5673-5679(2018).
[6] Fellows N N, Sato H, Lin Y D et al. Dichromatic color tuning with InGaN-based light-emitting diodes[J]. Applied Physics Letters, 93, 121112(2008).
[7] Ren H W, Fan Y H, Wu S T. Prism grating using polymer stabilized nematic liquid crystal[J]. Applied Physics Letters, 82, 3168-3170(2003).
[8] Soares L L, Cescato L. Metallized photoresist grating as a polarizing beam splitter[J]. Applied Optics, 40, 5906-5910(2001).
[9] Dai M, Wan W W, Zhu X Y et al. Broadband and wide angle infrared wire-grid polarizer[J]. Optics Express, 23, 15390-15397(2015).
[10] Yang Z Y, Lu Y F. Broadband nanowire-grid polarizers inultraviolet-visible-near-infrared regions[J]. Optics Express, 15, 9510-9519(2007).
[11] Wang J J, Walters F, Liu X M et al. High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids[J]. Applied Physics Letters, 90, 061104(2007).
[12] Weber T, Käsebier T, Szeghalmi A et al. Iridium wire grid polarizer fabricated using atomic layer deposition[J]. Nanoscale Research Letters, 6, 558(2011).
[14] Drauschke A, Schnabel B, Wyrowski F. Comment on the inverse polarization effect in metal-stripe polarizers[J]. Journal of Optics A: Pure and Applied Optics, 3, 67-71(2001).
[15] Honkanen M. KettunenV, Kuittinen M, et al. Inverse metal-stripe polarizers[J]. Applied Physics B: Lasers and Optics, 68, 81-85(1999).
[16] Kang G G, Vartiainen I, Bai B F et al. Inverse polarizing effect of subwavelength metallic gratings in deep ultraviolet band[J]. Applied Physics Letters, 99, 071103(2011).
[17] Kang G, Rahomäki J, Dong J et al. Enhanced deep ultraviolet inverse polarization transmission through hybrid Al-SiO2 gratings[J]. Applied Physics Letters, 103, 131110(2013).
[18] Raether H. Surface plasmons on smooth and rough surfaces and on gratings[M]. Berlin, Heidelberg:Springer(1988).
[19] Drauschke A, Schnabel B, Wyrowski F. Comment on the inverse polarization effect in metal-stripe polarizers[J]. Journal of Optics A: Pure and Applied Optics, 3, 67-71(2001).
[23] Huang C P, Wang Q J, Zhu Y Y. Dual effect of surface plasmons in light transmission through perforated metal films[J]. Physical Review B, 75, 245421(2007).
Get Citation
Copy Citation Text
Zhang Chong, Hu Jingpei, Zhou Ruyi, Liu Tiecheng, Sergey Avakaw, Zeng Aijun, Huang Huijie. Design and Analysis of Inverse Polarization Grating Devices for Deep Ultraviolet Light[J]. Chinese Journal of Lasers, 2020, 47(3): 301005
Category: laser devices and laser physics
Received: Sep. 4, 2019
Accepted: --
Published Online: Mar. 12, 2020
The Author Email: