
Using two infrared pulsed lasers systems, a picosecond solid-state Nd:YAG laser with tuneable repetition rate (400 kHz–1 MHz) working in the burst mode of a multi-pulse train and a femtosecond Ti:sapphire laser amplifier with tune
We demonstrate the simultaneous temporal contrast improvement and pulse compression of a Yb-doped femtosecond laser via nonlinear elliptical polarization rotation in a solid state multi-pass cell. The temporal contrast is improved
Infrared femtosecond optical vortices open up many new research fields, such as optical micro–nano manipulation, time-resolved nonlocal spectroscopy in solids, vortex secondary radiation and particle generations. In this article,
Various coatings in high-power laser facilities suffer from laser damage due to nodule defects. We propose a nodule dome removal (NDR) strategy to eliminate unwanted localized electric-field (E-field) enhancement caused by nodule
This research work emphasizes the capability of delivering optically shaped targets through the interaction of nanosecond laser pulses with high-density gas-jet profiles, and explores proton acceleration in the near-critical densi
We report on a vortex laser chirped-pulse amplification (CPA) system that delivers pulses with a peak power of 45 TW. A focused intensity exceeding 1019 W/cm2 has been demonstrated for the first time by the vortex amplification sc
A pulsed fast neutron source is critical for applications of fast neutron resonance radiography and fast neutron absorption spectroscopy. However, due to the large transversal source size (of the order of mm) and long pulse durati