High Power Laser Science and Engineering
Co-Editors-in-Chief
Xian-Tu He; Zunqi Lin; Colin Danson
Vol. 6,7, Issue , 2018
Editor(s): Xian-Tu He; Zunqi Lin; Colin Danson
Year: 2018
Status: Published
Contents 22 article(s)
Optimizing the cleanliness in multi-segment disk amplifiers based on vector flow schemesOn the Cover
Zhiyuan Ren, Jianqiang Zhu, Zhigang Liu, and Xiaowei Yang

The objective of maintaining the cleanliness of the multi-segment disk amplifier in Shenguang-II (SG-II) is to reduce laser-induced damage for optics. The flow field of clean gas, which is used for the transportation of contaminant particles, is a key factor affecting the cleanliness level in the multi-segment disk amplifier. We developed a gas–solid coupling and three-dimensional flow numerical simulation model. The three-dimensional and two-phase flow model is verified by the flow-field smog experiment and the particle concentration measurement experiment with the 130-disk amplifier in SG-II. By optimizing the boundary conditions with the same flow rate, the multi-inlet vector flow scheme can not only effectively reduce the purging time, but also prevent the reverse diffusion of contaminant particles in the multi-segment disk amplifier and the deposition of contaminant particles on the surface of the Nd:glass.

High Power Laser Science and Engineering
Jan. 24, 2018, Vol. 6 Issue 1 010000e1 (2018)
Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials
David Vojna, Ryo Yasuhara, Hiroaki Furuse, Ondrej Slezak, Simon Hutchinson, Antonio Lucianetti, Tomas Mocek, and Miroslav Cech

Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials, highly potential material candidates for high-energy laser Faraday isolators, are presented in this paper. Temperature dependence of the Verdet constant of nondoped Ho2O3 ceramics was measured for temperatures 15–305 K at $1.064~\unicode[STIX]{x03BC}\text{m}$ wavelength. The Verdet constant dispersion for wavelengths 0.5–$1~\unicode[STIX]{x03BC}\text{m}$ and $1.064~\unicode[STIX]{x03BC}\text{m}$ was measured for both nondoped Ho2O3 ceramics and Ho2O3 ceramics doped with terbium Tb3+ (0.2 at. %) and cerium Ce3+ (0.1 at. %) ions. The results suggest that the relatively low level of doping of Ho2O3 with these ions has no significant boosting impact on the Faraday effect. Therefore, other compositions of Ho2O3 ceramics-based magneto-optical materials, as well as various doping concentrations, should be further examined.

High Power Laser Science and Engineering
Jan. 25, 2018, Vol. 6 Issue 1 010000e2 (2018)
Performance of an elliptical crystal spectrometer for SGII X-ray opacity experiments
Ruirong Wang, Honghai An, Zhiyong Xie, and Wei Wang

A new crystal spectrometer for application in X-ray opacity experiments is proposed. The conditions necessary to yield broad spectral coverage with a resolution ${>}$500, strong rejection of hard X-ray backgrounds and negligible source broadening for extended sources are formulated. In addition, the design, response modeling and reporting of an elliptical crystal spectrometer in conjunction with a linear detector are presented. The measured results demonstrate the performance of the new crystal spectrometer with a broad energy coverage range, high spectral resolution, and high luminosity (good collection efficiency). This spectrometer can be used in combination with point-projection backlighting techniques as utilized in X-ray opacity experiments. Specifically, the X-ray source, transmission and self-emission spectra of the sample can be measured simultaneously in a single shot, which can reduce the experimental uncertainties from shot-to-shot fluctuations. The new crystal spectrometer has been used in the X-ray opacity experiment to precisely measure the aluminum $K$-absorption edge shift in the energy range around 1.560 keV in strongly compressed matter. It is demonstrated that the spectrometer can be used to realize measurements of new and unpredictable physical interactions of interest, as well as basic and applied high-energy-density science.

High Power Laser Science and Engineering
Jul. 02, 2018, Vol. 6 Issue 1 010000e3 (2018)
Technology development for ultraintense all-OPCPA systemsEditors' Pick
J. Bromage, S.-W. Bahk, I. A. Begishev, C. Dorrer, M. J. Guardalben, B. N. Hoffman, J. B. Oliver, R. G. Roides, E. M. Schiesser, M. J. Shoup, M. Spilatro, B. Webb, D. Weiner, and J. D. Zuegel

Optical parametric chirped-pulse amplification (OPCPA) [Dubietis et al., Opt. Commun. 88, 437 (1992)] implemented by multikilojoule Nd:glass pump lasers is a promising approach to produce ultraintense pulses (${>}10^{23}~\text{W}/\text{cm}^{2}$). Technologies are being developed to upgrade the OMEGA EP Laser System with the goal to pump an optical parametric amplifier line (EP OPAL) with two of the OMEGA EP beamlines. The resulting ultraintense pulses (1.5 kJ, 20 fs, $10^{24}~\text{W}/\text{cm}^{2}$) would be used jointly with picosecond and nanosecond pulses produced by the other two beamlines. A midscale OPAL pumped by the Multi-Terawatt (MTW) laser is being constructed to produce 7.5-J, 15-fs pulses and demonstrate scalable technologies suitable for the upgrade. MTW OPAL will share a target area with the MTW laser (50 J, 1 to 100 ps), enabling several joint-shot configurations. We report on the status of the MTW OPAL system, and the technology development required for this class of all-OPCPA laser system for ultraintense pulses.

High Power Laser Science and Engineering
Feb. 08, 2019, Vol. 7 Issue 1 010000e4 (2019)
Study of backward terahertz radiation from intense picosecond laser–solid interactions using a multichannel calorimeter systemOn the Cover
H. Liu, G.-Q. Liao, Y.-H. Zhang, B.-J. Zhu, Z. Zhang, Y.-T. Li, G. G. Scott, D. Rusby, C. Armstrong, E. Zemaityte, P. Bradford, N. Woolsey, P. Huggard, P. McKenna, and D. Neely

A multichannel calorimeter system is designed and constructed which is capable of delivering single-shot and broad-band spectral measurement of terahertz (THz) radiation generated in intense laser&ndash;plasma interactions. The generation mechanism of backward THz radiation (BTR) is studied by using the multichannel calorimeter system in an intense picosecond laser&ndash;solid interaction experiment. The dependence of the BTR energy and spectrum on laser energy, target thickness and pre-plasma scale length is obtained. These results indicate that coherent transition radiation is responsible for the low-frequency component (${<}$1 THz) of BTR. It is also observed that a large-scale pre-plasma primarily enhances the high-frequency component (${>}$3 THz) of BTR.

High Power Laser Science and Engineering
Jan. 22, 2019, Vol. 7 Issue 1 010000e6 (2019)
High-power, Joule-class, temporally shaped multi-pass ring laser amplifier with two Nd:glass laser heads
Jiangtao Guo, Jiangfeng Wang, Hui Wei, Wenfa Huang, Tingrui Huang, Gang Xia, Wei Fan, and Zunqi Lin

A high-power, Joule-class, nanosecond temporally shaped multi-pass ring laser amplifier system with two neodymium-doped phosphate glass (Nd:glass) laser heads is demonstrated. The laser amplifier system consists of three parts: an all-fiber structure seeder, a diode-pumped Nd:glass regenerative amplifier and a multi-pass ring amplifier, where the thermally induced depolarization of two laser heads is studied experimentally and theoretically. Following the injection of a square pulse with the pulse energy of 0.9 mJ and pulse width of 6 ns, a 0.969-J high-energy laser pulse at 1 Hz was generated, which had the ability to change the waveform arbitrarily, based on the all-fiber structure front end. The experimental results show that the proposed laser system is promising to be adopted in the preamplifier of high-power laser facilities.

High Power Laser Science and Engineering
Feb. 07, 2019, Vol. 7 Issue 1 010000e8 (2019)
High damage threshold liquid crystal binary mask for laser beam shaping
Gang Xia, Wei Fan, Dajie Huang, He Cheng, Jiangtao Guo, and Xiaoqin Wang

In order to improve the damage threshold and enlarge the aperture of a laser beam shaper, photolithographic patterning technology is adopted to design a new type of liquid crystal binary mask. The inherent conductive metal layer of commercial liquid crystal electro-optical spatial light modulators is replaced by azobenzene-based photoalignment layers patterned by noncontact photolithography. Using the azobenzene-based photoalignment layer, a liquid crystal binary mask for beam shaping is fabricated. In addition, the shaping ability, damage threshold, write/erase flexibility and stability of the liquid crystal binary mask are tested. Using a 1 Hz near-IR (1064 nm) laser, the multiple-shot nanosecond damage threshold of the liquid crystal mask is measured to be higher than $15~\text{J}/\text{cm}^{2}$. The damage threshold of the azobenzene-based photoalignment layer is higher than $50~\text{J}/\text{cm}^{2}$ under the same testing conditions.

High Power Laser Science and Engineering
Feb. 11, 2019, Vol. 7 Issue 1 010000e9 (2019)
Quantum electrodynamics experiments with colliding petawatt laser pulses
I. C. E. Turcu, B. Shen, D. Neely, G. Sarri, K. A. Tanaka, P. McKenna, S. P. D. Mangles, T.-P. Yu, W. Luo, X.-L. Zhu, and Y. Yin

A new generation of high power laser facilities will provide laser pulses with extremely high powers of 10 petawatt (PW) and even 100 PW, capable of reaching intensities of $10^{23}~\text{W}/\text{cm}^{2}$ in the laser focus. These ultra-high intensities are nevertheless lower than the Schwinger intensity $I_{S}=2.3\times 10^{29}~\text{W}/\text{cm}^{2}$ at which the theory of quantum electrodynamics (QED) predicts that a large part of the energy of the laser photons will be transformed to hard Gamma-ray photons and even to matter, via electron–positron pair production. To enable the investigation of this physics at the intensities achievable with the next generation of high power laser facilities, an approach involving the interaction of two colliding PW laser pulses is being adopted. Theoretical simulations predict strong QED effects with colliding laser pulses of ${\geqslant}10~\text{PW}$ focused to intensities ${\geqslant}10^{22}~\text{W}/\text{cm}^{2}$.

High Power Laser Science and Engineering
Feb. 14, 2019, Vol. 7 Issue 1 01000e10 (2019)
Role of magnetic field evolution on filamentary structure formation in intense laser–foil interactions
M. King, N. M. H. Butler, R. Wilson, R. Capdessus, R. J. Gray, H. W. Powell, R. J. Dance, H. Padda, B. Gonzalez-Izquierdo, D. R. Rusby, N. P. Dover, G. S. Hicks, O. C. Ettlinger, C. Scullion, D. C. Carroll, Z. Najmudin, M. Borghesi, D. Neely, and P. McKenna

Filamentary structures can form within the beam of protons accelerated during the interaction of an intense laser pulse with an ultrathin foil target. Such behaviour is shown to be dependent upon the formation time of quasi-static magnetic field structures throughout the target volume and the extent of the rear surface proton expansion over the same period. This is observed via both numerical and experimental investigations. By controlling the intensity profile of the laser drive, via the use of two temporally separated pulses, both the initial rear surface proton expansion and magnetic field formation time can be varied, resulting in modification to the degree of filamentary structure present within the laser-driven proton beam.

High Power Laser Science and Engineering
Mar. 13, 2019, Vol. 7 Issue 1 01000e14 (2019)
High-brightness all-fiber Raman lasers directly pumped by multimode laser diodes
S. A. Babin

High-brightness fiber laser sources usually utilize active rare-earth-doped fibers cladding-pumped by multimode laser diodes (LDs), but they operate in limited wavelength ranges. Singlemode-passive-fiber based Raman lasers are able to operate at almost any wavelength being pumped by high-power fiber lasers. One of the interesting possibilities is to directly pump graded-index (GRIN) multimode passive fibers by available high-power multimode LDs at 915–940 nm, thus achieving high-power Raman lasing in the wavelength range of 950–1000 nm, which is problematic for rare-earth-doped fiber lasers. Here we review the latest results on the development of all-fiber high-brightness LD-pumped sources based on GRIN fiber with in-fiber Bragg gratings (FBGs). The mode-selection properties of FBGs inscribed by fs pulses supported by the Raman clean-up effect result in efficient conversion of multimode pump into a high-quality output beam at 9xx nm. GRIN fibers with core diameters 62.5, 85 and $100~\unicode[STIX]{x03BC}\text{m}$ are compared. Further scaling capabilities and potential applications of such sources are discussed.

High Power Laser Science and Engineering
Mar. 13, 2019, Vol. 7 Issue 1 01000e15 (2019)
Polarized proton beams from laser-induced plasmas
Anna Hützen, Johannes Thomas, Jürgen Böker, Ralf Engels, Ralf Gebel, Andreas Lehrach, Alexander Pukhov, T. Peter Rakitzis, Dimitris Sofikitis, and Markus Büscher

We report on the concept of an innovative source to produce polarized proton/deuteron beams of a kinetic energy up to several GeV from a laser-driven plasma accelerator. Spin effects have been implemented into the particle-in-cell (PIC) simulation code VLPL (Virtual Laser Plasma Lab) to make theoretical predictions about the behavior of proton spins in laser-induced plasmas. Simulations of spin-polarized targets show that the polarization is conserved during the acceleration process. For the experimental realization, a polarized HCl gas-jet target is under construction using the fundamental wavelength of a Nd:YAG laser system to align the HCl bonds and simultaneously circularly polarized light of the fifth harmonic to photo-dissociate, yielding nuclear polarized H atoms. Subsequently, their degree of polarization is measured with a Lamb-shift polarimeter. The final experiments, aiming at the first observation of a polarized particle beam from laser-generated plasmas, will be carried out at the 10 PW laser system SULF at SIOM, Shanghai.

High Power Laser Science and Engineering
Mar. 14, 2019, Vol. 7 Issue 1 01000e16 (2019)
Maximizing magnetic field generation in high power laser–solid interactionsEditors' Pick
L. G. Huang, H. Takabe, and T. E. Cowan

In order to understand the transport of fast electrons within solid density targets driven by an optical high power laser, we have numerically investigated the dynamics and structure of strong self-generated magnetic fields in such experiments. Here we present a systematic study of the bulk magnetic field generation due to the ponderomotive current, Weibel-like instability and resistivity gradient between two solid layers. Using particle-in-cell simulations, we observe the effect of varying the laser and target parameters, including laser intensity, focal size, incident angle, preplasma scale length, target thickness and material and experimental geometry. The simulation results suggest that the strongest magnetic field is generated with laser incident angles and preplasma scale lengths that maximize laser absorption efficiency. The recent commissioning of experimental platforms equipped with both optical high power laser and X-ray free electron laser (XFEL), such as European XFEL-HED, LCLS-MEC and SACLA beamlines, provides unprecedented opportunities to probe the self-generated bulk magnetic field by X-ray polarimetry via Faraday rotation with simultaneous high spatial and temporal resolution. We expect that this systematic numerical investigation will pave the way to design and optimize near future experimental setups to probe the magnetic fields in such experimental platforms.

High Power Laser Science and Engineering
Apr. 23, 2019, Vol. 7 Issue 2 02000e22 (2019)
Bremsstrahlung emission from high power laser interactions with constrained targets for industrial radiographyOn the Cover
C. D. Armstrong, C. M. Brenner, C. Jones, D. R. Rusby, Z. E. Davidson, Y. Zhang, J. Wragg, S. Richards, C. Spindloe, P. Oliveira, M. Notley, R. Clarke, S. R. Mirfayzi, S. Kar, Y. Li, T. Scott, P. McKenna, and D. Neely

Laser–solid interactions are highly suited as a potential source of high energy X-rays for nondestructive imaging. A bright, energetic X-ray pulse can be driven from a small source, making it ideal for high resolution X-ray radiography. By limiting the lateral dimensions of the target we are able to confine the region over which X-rays are produced, enabling imaging with enhanced resolution and contrast. Using constrained targets we demonstrate experimentally a $(20\pm 3)~\unicode[STIX]{x03BC}\text{m}$ X-ray source, improving the image quality compared to unconstrained foil targets. Modelling demonstrates that a larger sheath field envelope around the perimeter of the constrained targets increases the proportion of electron current that recirculates through the target, driving a brighter source of X-rays.

High Power Laser Science and Engineering
Apr. 25, 2019, Vol. 7 Issue 2 02000e24 (2019)
Optical diagnostics for density measurement in high-quality laser-plasma electron accelerators
Fernando Brandi, and Leonida Antonio Gizzi

Implementation of laser-plasma-based acceleration stages in user-oriented facilities requires the definition and deployment of appropriate diagnostic methodologies to monitor and control the acceleration process. An overview is given here of optical diagnostics for density measurement in laser-plasma acceleration stages, with emphasis on well-established and easily implemented approaches. Diagnostics for both neutral gas and free-electron number density are considered, highlighting real-time measurement capabilities. Optical interferometry, in its various configurations, from standard two-arm to more advanced common-path designs, is discussed, along with spectroscopic techniques such as Stark broadening and Raman scattering. A critical analysis of the diagnostics presented is given concerning their implementation in laser-plasma acceleration stages for the production of high-quality GeV electron bunches.

High Power Laser Science and Engineering
Apr. 26, 2019, Vol. 7 Issue 2 02000e26 (2019)
High-repetition-rate, high-peak-power 1450 nm laser source based on optical parametric chirped pulse amplification
Pengfei Wang, Beijie Shao, Hongpeng Su, Xinlin Lv, Yanyan Li, Yujie Peng, and Yuxin Leng

We present a high-peak-power, near-infrared laser system based on optical parametric chirped pulse amplification pumped by a home-built picosecond pumping laser, which can generate over 40 mJ energy at 1450 nm center wavelength and operate at 100 Hz repetition rate. Subsequently, the chirped laser pulses are compressed down to 60 fs with 26.5 mJ energy, corresponding to a peak power of 0.44 TW. This high-energy, long-wavelength laser source is highly suitable for driving various nonlinear optical phenomena, such as high-order harmonic generation and high-flux coherent extreme ultraviolet/soft X-ray radiation.

High Power Laser Science and Engineering
May. 16, 2019, Vol. 7 Issue 2 02000e32 (2019)
Collective absorption of laser radiation in plasma at sub-relativistic intensities
Y. J. Gu, O. Klimo, Ph. Nicolaï, S. Shekhanov, S. Weber, and V. T. Tikhonchuk

Processes of laser energy absorption and electron heating in an expanding plasma in the range of irradiances $I\unicode[STIX]{x1D706}^{2}=10^{15}{-}10^{16}~\text{W}\,\cdot \,\unicode[STIX]{x03BC}\text{m}^{2}/\text{cm}^{2}$ are studied with the aid of kinetic simulations. The results show a strong reflection due to stimulated Brillouin scattering and a significant collisionless absorption related to stimulated Raman scattering near and below the quarter critical density. Also presented are parametric decay instability and resonant excitation of plasma waves near the critical density. All these processes result in the excitation of high-amplitude electron plasma waves and electron acceleration. The spectrum of scattered radiation is significantly modified by secondary parametric processes, which provide information on the spatial localization of nonlinear absorption and hot electron characteristics. The considered domain of laser and plasma parameters is relevant for the shock ignition scheme of inertial confinement fusion.

High Power Laser Science and Engineering
Jul. 12, 2019, Vol. 7 Issue 3 03000e39 (2019)
400 TW operation of Orion at ultra-high contrast
Stefan Parker, Colin Danson, David Egan, Stephen Elsmere, Mark Girling, Ewan Harvey, David Hillier, Dianne Hussey, Stephen Masoero, James McLoughlin, Rory Penman, Paul Treadwell, David Winter, and Nicholas Hopps

The Orion facility at the Atomic Weapons Establishment in the United Kingdom has the capability to operate one of its two 500 J, 500 fs short-pulse petawatt beams at the second harmonic, the principal reason being to increase the temporal contrast of the pulse on target. This is achieved post-compression, using 3 mm thick type-1 potassium dihydrogen phosphate crystals. Since the beam diameter of the compressed pulse is mm, it is impractical to achieve this over the full aperture due to the unavailability of the large aperture crystals. Frequency doubling was originally achieved on Orion using a circular sub-aperture of 300 mm diameter. The reduction in aperture limited the output energy to 100 J. The second-harmonic capability has been upgraded by taking two square 300 mm 300 mm sub-apertures from the beam and combining them at focus using a single paraboloidal mirror, thus creating a 200 J, 500 fs, i.e., 400 TW facility at the second harmonic.

High Power Laser Science and Engineering
Aug. 15, 2018, Vol. 6 Issue 3 03000e47 (2018)
Particle-in-cell simulations of laser–plasma interactions at solid densities and relativistic intensities: the role of atomic processes
D. Wu, X. T. He, W. Yu, and S. Fritzsche

Direct numerical simulation of intense laser–solid interactions is still of great challenges, because of the many coupled atomic and plasma processes, such as ionization dynamics, collision among charged particles and collective electromagnetic fields, to name just a few. Here, we develop a new particle-in-cell (PIC) simulation code, which enables us to calculate laser–solid interactions in a more realistic way. This code is able to cover almost ‘all’ the coupled physical processes. As an application of the new code, the generation and transport of energetic electrons in front of and within the solid target when irradiated by intense laser beams are studied. For the considered case, in which laser intensity is and pre-plasma scale length in front of the solid is , several quantitative conclusions are drawn: (i) the collisional damping (although it is very weak) can significantly affect the energetic electrons generation in front of the target, (ii) the Bremsstrahlung radiation will be enhanced by 2–3 times when the solid is dramatically heated and ionized, (iii) the ‘cut-off’ electron energy is lowered by an amount of 25% when both collision damping and Bremsstrahlung radiations are included, and (iv) the resistive electromagnetic fields due to Ohmic heating play nonignorable roles and must be taken into account in such interactions.

High Power Laser Science and Engineering
Aug. 23, 2018, Vol. 6 Issue 3 03000e50 (2018)
Design and experimental demonstration of a high conversion efficiency OPCPA pre-amplifier for petawatt laser facility
Xiao Liang, Xinglong Xie, Jun Kang, Qingwei Yang, Hui Wei, Meizhi Sun, and Jianqiang Zhu

We present the design and experiment of a broadband optical parametric chirped-pulse amplifier (OPCPA) which provides high conversion efficiency and good beam quality at 808 nm wavelength. Using a three-dimensional spatial and temporal numerical model, several design considerations necessary to achieve high conversion efficiency, good beam quality and good output stability are discussed. To improve the conversion efficiency and broaden the amplified signal bandwidth simultaneously, the nonlinear crystal length and OPCPA parameters are analyzed and optimized with the concept of dissipating amplified idler between optical parametric amplification (OPA) of two crystals configuration. In the experiment, an amplifier consisting of two OPCPA stages of ‘L’ type configuration was demonstrated by using the optimized parameters. An amplified signal energy of 160 mJ was achieved with a total pump-to-signal efficiency of 35% (43% efficiency for the OPCPA stage 2). The output bandwidth of signal pulse reached 80 nm and the signal pulse was compressed to 24 fs. The energy stability reached 1.67% RMS at 3% pump energy variation. The optimized OPCPA amplifier operates at a repetition rate of 1 Hz and is used as a front-end injection for the main amplifier of SG-II 5PW laser facility.

High Power Laser Science and Engineering
Nov. 22, 2018, Vol. 6 Issue 4 04000e58 (2018)
Single-shot cross-correlator for pulse-contrast characterization of high peak-power lasers
Jingui Ma, Peng Yuan, Jing Wang, Guoqiang Xie, Heyuan Zhu, and Liejia Qian

Pulse contrast is a crucial parameter of high peak-power lasers since the prepulse noise may disturb laser–plasma interactions. Contrast measurement is thus a prerequisite to tackle the contrast challenge in high peak-power lasers. This paper presents the progress review of single-shot cross-correlator (SSCC) for real-time contrast characterization. We begin with the key technologies that enable an SSCC to simultaneously possess high dynamic range (), large temporal window (50–70 ps) and high fidelity. We also summarize the instrumentation of SSCC prototypes and their applications on five sets of petawatt laser facilities in China. Finally, we discuss how to extend contrast measurements from time domain to spatiotemporal domain. Real-time and high-dynamic-range contrast measurements, provided by SSCC, can not only characterize various complex noises in high peak-power lasers but also guide the system optimization.

High Power Laser Science and Engineering
Dec. 18, 2018, Vol. 6 Issue 4 04000e61 (2018)
Overview of ytterbium based transparent ceramics for diode pumped high energy solid-state lasers
Samuel Paul David, Venkatesan Jambunathan, Antonio Lucianetti, and Tomas Mocek

Development of high energy laser sources with nanosecond pulses at several hertz values for repetition rate has been very attractive in recent years due to their great potential for practical applications. With the recent advancement in fabricating large size laser quality transparent ceramics, diode pumped solid-state laser generating pulse energy of 100 J at 10 Hz has been recently realized at HiLASE center using Yb:YAG ceramic with Cr:YAG cladding. This review discusses Yb based high energy lasers, specific laser geometries for efficient thermal management and the role of transparent ceramics in such diode pumped high-energy-class solid-state lasers around the world.

High Power Laser Science and Engineering
Dec. 18, 2018, Vol. 6 Issue 4 04000e62 (2018)
Development of a 100 J, 10 Hz laser for compression experiments at the High Energy Density instrument at the European XFEL
Paul Mason, Saumyabrata Banerjee, Jodie Smith, Thomas Butcher, Jonathan Phillips, Hauke Höppner, Dominik Möller, Klaus Ertel, Mariastefania De Vido, Ian Hollingham, Andrew Norton, Stephanie Tomlinson, Tinesimba Zata, Jorge Suarez Merchan, Chris Hooker, Mike Tyldesley, Toma Toncian, Cristina Hernandez-Gomez, Chris Edwards, and John Collier

In this paper we review the design and development of a 100 J, 10 Hz nanosecond pulsed laser, codenamed DiPOLE100X, being built at the Central Laser Facility (CLF). This 1 kW average power diode-pumped solid-state laser (DPSSL) is based on a master oscillator power amplifier (MOPA) design, which includes two cryogenic gas cooled amplifier stages based on DiPOLE multi-slab ceramic Yb:YAG amplifier technology developed at the CLF. The laser will produce pulses between 2 and 15 ns in duration with precise, arbitrarily selectable shapes, at pulse repetition rates up to 10 Hz, allowing real-time shape optimization for compression experiments. Once completed, the laser will be delivered to the European X-ray Free Electron Laser (XFEL) facility in Germany as a UK-funded contribution in kind, where it will be used to study extreme states of matter at the High Energy Density (HED) instrument.

High Power Laser Science and Engineering
Dec. 19, 2018, Vol. 6 Issue 4 04000e65 (2018)
Please enter the answer below before you can view the full text.
8+6=
Submit