We experimentally investigate the generation of above-threshold harmonics completely from argon atoms on an excited state using mid-infrared femtosecond laser pulses. The highly nonlinear dependences of the observed signal on the pulse energy and polarization of the probe laser pulses indicate its nonperturbative characteristic.
We report on a systematic experimental study on the fluorescence spectra produced from a femtosecond laser filament in air under a high electric field. The electric field alone was strong enough to create corona discharge (CD). Fluorescence spectra from neutral and ionic air molecules were measured and compared with pure high-voltage CD and pure laser filamentation (FIL). Among them, high electric field assisted laser FIL produced nitrogen fluorescence more efficiently than either pure CD or pure FIL processes. The nonlinear enhancement of fluorescence from the interaction of the laser filament and corona discharging electric field resulted in a more efficient ionization along the laser filament zone, which was confirmed by the spectroscopic measurement of both ionization-induced fluorescence and plasma-scattered 800 nm laser pulses. This is believed to be the key precursor process for filament-guided discharge.2011CB808103), the Chinese Academy of Sciences and the State Key Laboratory of High Field Laser Physics, the 100 Talents Program of Chinese Academy of Sciences, and theShanghai Pujiang Program.
We produced 5-mJ, 6.5-fs visible pulses at a repetition rate of 1 kHz using filamentation in a gas cell filled with kryptonfollowed by spectral selection and phase compensation by a combination of dielectric mirrors. The visible pulses have a smooth spectrum from 520 to 650 nm with a shot-to-shot stability in each spectral component of better than 2% (standard deviation). This pulse compression scheme is simple and robust, and can be easily integrated into intense ultrashort-pulse laser systems.Program for Leading Graduate Schools (MERIT) by Japan Society for the Promotion of Science.