Journal of Optoelectronics · Laser, Volume. 35, Issue 1, 75(2024)
LiDAR point cloud 3D object detection based on cross self-attention mechanism
[1] [1] HAN K,WANG Y, CHEN H,et al.A survey on visual transformer[EB/OL].(2020-12-23)[2022-08-23].https://arxiv.org/abs/2012.12556.
[2] [2] DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.An image is worth 16×16 words:transformers for image recognition at scale[EB/OL].(2020-10-22)[2022-08-23].https://arxiv.org/abs/2010.11929.
[3] [3] ZHAO H,JIANG L,JIA J,et al.Point transformer[C]//IEEE/CVF International Conference on Computer Vision (ICCV),October 10-17,2021,Montreal,Canada.New York:IEEE,2021:16259-16268.
[4] [4] GUO M H,CAI J X,LIU Z N,et al.PCT:point cloud transformer[J].Computational Visual Media,2021,7(2):187-199.
[5] [5] HU Q,YANG B,XIE L,et al.RandLA-Net:efficient semantic segmentation of large-scale point clouds[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),June 13-19,2020,Virtual.New York:IEEE,2020:11105-11114.
[6] [6] ZHOU Y,TUZEL O.VoxelNet:end-to-end learning for point cloud based 3D object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR),June 18-23,2018,Salt Lake City,Utah,USA. New York:IEEE,2018:4490-4499.
[7] [7] CHARLES R Q,SU H,KAICHUN M,et al.PointNet:Deep learning on point sets for 3D classification and segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition,July 21-26,2017,Honolulu,HI,USA.New York:IEEE,2017:77-85.
[8] [8] YAN Y,MAO Y,LI B.SECOND:sparsely embedded convolutional detection[J].Sensors,2018,18(10):3337.
[9] [9] LANG A H,VORA S,CAESAR H,et al.Point-Pillars:fast encoders for object detection from point clouds[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),June 15-20,2019,Long Beach,CA,USA.New York:IEEE,2019:12689-12697.
[10] [10] ZHENG W,TANG W,CHEN S,et al.CIA-SSD:confident IoU-aware single-stage object detector from point cloud[C]//AAAI Conference on Artificial Intelligence,February 2-9,2021,Virtual.Park:AAAI, 2021:3555-3562.
[11] [11] SHI S,WANG X,LI H.PointRCNN:3D object proposal generation and detection from point cloud[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),June 15-20,2019,Long Beach,CA,USA.New York:IEEE,2019:770-779.
[12] [12] SHI S,GUO C,JIANG L,et al.PV-RCNN:point-voxel feature set abstraction for 3D object detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),June 13-19,2020,Virtual.New York:IEEE,2020:10526-10535.
[13] [13] QI C R, YI L, SU H, et al.PointNet++:deep hierarchical feature learning on point sets in a metric space[C]//Advances in Neural Information Processing Systems,December 4-9,2017,Long Beach,California,USA.Red Hook,NY,USA:Current Associates Inc,2017,30:5015-5114.
[14] [14] BHATTACHARYYA P,HUANG C,CZARNECKI K.SADet3D:self-attention based context-aware 3D object detection[C]//IEEE/CVF International Conference on Computer Vision (ICCV),October 11-17,2021,Montreal,Canada.New York:IEEE,2021:3022-3031.
[15] [15] SHI S,WANG Z,SHI J,et al.From points to parts: 3D object detection from point cloud with part-aware and part-aggregation network [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,43(8):2647-2664.
Get Citation
Copy Citation Text
ZHANG Suliang, ZHANG Jinglei, WEN Biao. LiDAR point cloud 3D object detection based on cross self-attention mechanism[J]. Journal of Optoelectronics · Laser, 2024, 35(1): 75
Received: Aug. 23, 2022
Accepted: --
Published Online: Sep. 24, 2024
The Author Email: ZHANG Jinglei (zslhpw@stud.tjut.edu.cn)