[1] B.-S. Song, T. Asano, S. Jeon, H. Kim, C. Chen, D. D. Kang, S. Noda. Ultrahigh-Q photonic crystal nanocavities based on 4H silicon carbide. Optica, 6, 991(2019).
[2] C. Wang, Z. Fang, A. Yi, B. Yang, Z. Wang, L. Zhou, C. Shen, Y. Zhu, Y. Zhou, R. Bao, Z. Li, Y. Chen, K. Huang, J. Zhang, Y. Cheng, X. Ou. High-Q microresonators on 4H-silicon-carbide-on-insulator platform for nonlinear photonics. Light Sci. Appl., 10, 139(2021).
[3] H. Sato, M. Abe, I. Shoji, J. Suda, T. Kondo. Accurate measurements of second-order nonlinear optical coefficients of 6H and 4H silicon carbide. J. Opt. Soc. Am. B, 26, 1892(2009).
[4] Y. Zheng, M. Pu, A. Yi, X. Ou, H. Ou. 4H-SiC microring resonators for nonlinear integrated photonics. Opt. Lett., 44, 5784(2019).
[5] M. A. Guidry, K. Y. Yang, D. M. Lukin, A. Markosyan, J. Yang, M. M. Fejer, J. Vučković. Optical parametric oscillation in silicon carbide nanophotonics. Optica, 7, 1139(2020).
[6] S. Castelletto, A. Boretti. Silicon carbide color centers for quantum applications. J. Phys., 2, 022001(2020).
[7] M. Atatüre, D. Englund, N. Vamivakas, S.-Y. Lee, J. Wrachtrup. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater., 3, 38(2018).
[8] S. Castelletto, B. C. Johnson, V. Ivady, N. Stavrias, T. Umeda, A. Gali, T. Ohshima. A silicon carbide room-temperature single-photon source. Nat. Mater., 13, 151(2014).
[9] D. J. Christle, A. L. Falk, P. Andrich, P. V. Klimov, J. U. Hassan, N. T. Son, E. Janzén, T. Ohshima, D. D. Awschalom. Isolated electron spins in silicon carbide with millisecond coherence times. Nat. Mater., 14, 160(2015).
[10] D. M. Lukin, C. Dory, M. A. Guidry, K. Y. Yang, S. D. Mishra, R. Trivedi, M. Radulaski, S. Sun, D. Vercruysse, G. H. Ahn, J. Vučković. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photonics, 14, 330(2019).
[11] D. D. Awschalom, R. Hanson, J. Wrachtrup, B. B. Zhou. Quantum technologies with optically interfaced solid-state spins. Nat. Photonics, 12, 516(2018).
[12] B. Lienhard, T. Schröder, S. Mouradian, F. Dolde, T. T. Tran, I. Aharonovich, D. Englund. Bright and photostable single-photon emitter in silicon carbide. Optica, 3, 768(2016).
[13] N. Morioka, C. Babin, R. Nagy, I. Gediz, E. Hesselmeier, D. Liu, M. Joliffe, M. Niethammer, D. Dasari, V. Vorobyov, R. Kolesov, R. Stohr, J. Ul-Hassan, N. T. Son, T. Ohshima, P. Udvarhelyi, G. Thiering, A. Gali, J. Wrachtrup, F. Kaiser. Spin-controlled generation of indistinguishable and distinguishable photons from silicon vacancy centres in silicon carbide. Nat. Commun., 11, 2516(2020).
[14] M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, J. Wrachtrup. Coherent control of single spins in silicon carbide at room temperature. Nat. Mater., 14, 164(2014).
[15] R. Nagy, M. Niethammer, M. Widmann, Y. C. Chen, P. Udvarhelyi, C. Bonato, J. U. Hassan, R. Karhu, I. G. Ivanov, N. T. Son, J. R. Maze, T. Ohshima, O. O. Soykal, A. Gali, S. Y. Lee, F. Kaiser, J. Wrachtrup. High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide. Nat. Commun., 10, 1954(2019).
[16] K. Sakoda, T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Asakawa. Purcell effect of GaAs quantum dots by photonic crystal microcavities. Chin. Opt. Lett., 7, 879(2009).
[17] L. Fang, X. Gan, J. Zhao. High-Q factor photonic crystal cavities with cut air holes [Invited]. Chin. Opt. Lett., 18, 111402(2020).
[18] A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Loncar, M. D. Lukin. An integrated diamond nanophotonics platform for quantum-optical networks. Science, 354, 847(2016).
[19] A. L. Crook, C. P. Anderson, K. C. Miao, A. Bourassa, H. Lee, S. L. Bayliss, D. O. Bracher, X. Zhang, H. Abe, T. Ohshima, E. L. Hu, D. D. Awschalom. Purcell enhancement of a single silicon carbide color center with coherent spin control. Nano Lett., 20, 3427(2020).
[20] J. L. Zhang, S. Sun, M. J. Burek, C. Dory, Y. K. Tzeng, K. A. Fischer, Y. Kelaita, K. G. Lagoudakis, M. Radulaski, Z. X. Shen, N. A. Melosh, S. Chu, M. Loncar, J. Vuckovic. Strongly cavity-enhanced spontaneous emission from silicon-vacancy centers in diamond. Nano Lett., 18, 1360(2018).
[21] R. Ge, X. Yan, Y. Chen, X. Chen. Broadband and lossless lithium niobate valley photonic crystal waveguide [Invited]. Chin. Opt. Lett., 19, 060014(2021).
[22] A. Yi, Y. Zheng, H. Huang, J. Lin, Y. Yan, T. You, K. Huang, S. Zhang, C. Shen, M. Zhou, W. Huang, J. Zhang, S. Zhou, H. Ou, X. Ou. Wafer-scale 4H-silicon carbide-on-insulator (4H–SiCOI) platform for nonlinear integrated optical devices. Opt. Mater., 107, 109990(2020).
[23] C. Wang, C. Shen, A. Yi, S. Yang, L. Zhou, Y. Zhu, K. Huang, S. Song, M. Zhou, J. Zhang, X. Ou. Visible and near-infrared microdisk resonators on a 4H-silicon-carbide-on-insulator platform. Opt. Lett., 46, 2952(2021).
[24] Y. Zheng, M. Pu, A. Yi, B. Chang, T. You, K. Huang, A. N. Kamel, M. R. Henriksen, A. A. Jørgensen, X. Ou, H. Ou. High-quality factor, high-confinement microring resonators in 4H-silicon carbide-on-insulator. Opt. Express, 27, 13053(2019).
[25] J. Chan, M. Eichenfield, R. Camacho, O. Painter. Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity. Opt. Express, 17, 3802(2009).
[26] M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, O. Painter. Optomechanical crystals. Nature, 462, 78(2009).
[27] M. Radulaski, T. M. Babinec, K. Müller, K. G. Lagoudakis, J. L. Zhang, S. Buckley, Y. A. Kelaita, K. Alassaad, G. Ferro, J. Vučković. Visible photoluminescence from cubic (3C) silicon carbide microdisks coupled to high quality whispering gallery modes. ACS Photonics, 2, 14(2014).
[28] S. Castelletto, A. F. M. Almutairi, K. Kumagai, T. Katkus, Y. Hayasaki, B. C. Johnson, S. Juodkazis. Photoluminescence in hexagonal silicon carbide by direct femtosecond laser writing. Opt. Lett., 43, 6077(2018).
[29] M. Rühl, C. Ott, S. Götzinger, M. Krieger, H. B. Weber. Controlled generation of intrinsic near-infrared color centers in 4H-SiC via proton irradiation and annealing. Appl. Phys. Lett., 113, 122102(2018).
[30] S. Wang, M. Zhan, G. Wang, H. Xuan, W. Zhang, C. Liu, C. Xu, Y. Liu, Z. Wei, X. Chen. 4H-SiC: a new nonlinear material for midinfrared lasers. Laser Photonics Rev., 7, 831(2013).
[31] M. N. Gadalla, A. S. Greenspon, R. K. Defo, X. Zhang, E. L. Hu. Enhanced cavity coupling to silicon vacancies in 4H silicon carbide using laser irradiation and thermal annealing. Proc. Natl. Acad. Sci. U. S. A., 118, e2021768118(2021).
[32] A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, R. G. Beausoleil. Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity. Nat. Photonics, 5, 301(2011).
[33] E. Burstein, E. M. Purcell, C. Weisbuch. Spontaneous emission probabilities at radio frequencies. Confined Electrons and Photons: New Physics and Applications, 839(1995).
[34] A. Lohrmann, T. J. Karle, V. K. Sewani, A. Laucht, M. Bosi, M. Negri, S. Castelletto, S. Prawer, J. C. McCallum, B. C. Johnson. Integration of single-photon emitters into 3C-SiC microdisk resonators. ACS Photonics, 4, 462(2017).
[35] S. Kiravittaya, H. S. Lee, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, O. G. Schmidt. Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation. J. Appl. Phys., 109, 053115(2011).
[36] X. Wu, T. Fan, A. A. Eftekhar, A. Adibi. High-Q microresonators integrated with microheaters on a 3C-SiC-on-insulator platform. Opt. Lett., 44, 4941(2019).
[37] X. Y. Lu, J. Y. Lee, P. X. L. Feng, Q. Lin. Silicon carbide microdisk resonator. Opt. Lett., 38, 1304(2013).
[38] J. C. Lee, D. O. Bracher, S. Cui, K. Ohno, C. A. McLellan, X. Zhang, P. Andrich, B. Alemán, K. J. Russell, A. P. Magyar, I. Aharonovich, A. Bleszynski Jayich, D. Awschalom, E. L. Hu. Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity. Appl. Phys. Lett., 105, 261101(2014).