Microelectronics, Volume. 51, Issue 6, 923(2021)
Simulation Study on In04Ga06N/GaN Heterojunction IMPATT Diode
[1] [1] BANERJEE S. THz solid-state source based on IMPATT devices [J]. Terahertz Biomed. Healthcare Technol, 2020, 116 (9): 1-41.
[2] [2] MUKHERJEE M, MAZUMDER N, ROY S K, et al.GaN IMPATT diode: a photo-sensitive high power terahertz source [J]. Semicond Sci Technol, 2007, 22(12): 1258- 1267.
[3] [3] CHEN K J, HABERLEN O, LIDOW A, et al. GaN-on-Si power technology: devices and applications [J]. IEEE Trans Elec Dev, 2017, 64(3): 779-795.
[4] [4] MILLAN J, GODIGNON P, PERPINA X, et al. A survey of wide bandgap power semiconductor devices [J]. IEEE Trans Power Elec, 2014, 29(5): 2155-2163.
[5] [5] HUISH P W. A comparison between 20:1 and 5:1 doping ratios for high efficiency X-band GaAs IMPATT diodes [C] // IEEE 7th Europ Microwave Conf. Copenhagen, Denmark. 1977: 487-491.
[6] [6] READ W T.A proposed high-frequency, negative- resistance diode [J]. Bell Syst Tech J, 1958, 37(2): 401-446.
[7] [7] KE W C, LEE S J, CHEN S L, et al. Effects of growth conditions on the acceptor activation of Mg-doped p-GaN [J]. Mater Chem & Phys, 2012, 133(2-3): 1029-1033.
[8] [8] DAI Y, YANG L A, XU S R, et al. Anisotropy effects on the performance of wurtzite GaN impact-ionization-avalanche-transit-time diodes [J]. Appl Phys, 2016, 9 (11): 111004.
[9] [9] WISSEMAN W R, SHAW D W, ADAMS R L, et al. GaAs Schottky-Read diodes for X-band operation [J]. IEEE Trans Elec Dev, 1974, 21(6): 317-323.
[10] [10] FU K, ZHOU J G, DENG X G, et al. Reverse leakage analysis for as-grown and regrown vertical GaN-on-GaN Schottky barrier diodes [J]. IEEE J Elec Dev Society, 2020, 8: 74-83.
[11] [11] LIU J, YANG M C, LIU C, et al. Three orders of reverse leakage reduction by using supercritical CO2 nitriding process on GaN quasi-vertical Schottky barrier diode [J]. IEEE Trans Elec Dev, 2021, 68(1): 197-201.
[12] [12] ZHANG Y H, SUN M, PIEDRA D, et al. GaN-on-Si vertical Schottky and p-n diodes [J]. IEEE Elec Dev Lett, 2014, 35(6): 618-620.
[13] [13] BANERJEE S, MITRA M. Heterojunction DDR THz IMPATT diodes based on AlxGa1-xN/GaN material system [J]. J Semicond, 2015, 36(6): 39-46.
[14] [14] GHOSH M, BISWAS A, ACHARYYA A. Terahertz radiators based on Si~3C-SiC MQW IMPATT diodes [J]. Nanosci Nanotechnol Asia, 2020, 10 (4): 501-506.
[15] [15] PATTANAIK S R, DASH G N, MISHRA J K. A new mm-wave GaAs similar to Ga052In048P heterojunction IMPATT diode [J]. IETE J Res, 2014, 57 (4): 351-356.
[16] [16] TRIPATHY P R, MUKHERJEE M, PATI S P. Possible realization of near optimum efficiency from n-Si-Ge/p-Ge-Si DDR hetero structure IMPATT diode [C] // IEEE Nat Conf Commun. Bangalore, India, 2011: 1-5.
[17] [17] FARAHMAND M, GARETTO C, BELLOTTI E, et al. Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: binaries and ternaries [J]. IEEE Trans Elec Dev, 2001, 48 (3): 535-542.
[18] [18] YANG L A, HAO Y, YAO Q Y, et al. Improved negative differential mobility model of GaN and AlGaN for a terahertz Gunn diode [J]. IEEE Trans Elec Dev, 2011, 58(4): 1076-1083.
[19] [19] OGUZMAN I H, BELLOTTI E, BRENNAN K F, et al.Theory of hole initiated impact ionization in bulk zincblende and wurtzite GaN [J]. J Appl Phys, 1997, 81(12): 7827-7834.
[20] [20] ELIASHEVICH I, LI Y X, OSINSKY A, et al. InGaN blue light-emitting diodes with optimized n-GaN layer [C] // IEEE SPIE Conf. San Jose, CA, USA. 1999: 3621-3623.
[21] [21] SZE S M. Modern semiconductor device physics [M]. New York: John Wiley, 1998: 485-488.
[22] [22] CULSHAW B, GIBLIN R A, BLAKRY P A. Avalanche diode oscillators I: basic concepts [J]. Int J Elec, 1974, 37(5): 577-579.
Get Citation
Copy Citation Text
DAI Yang, LU Zhaoyang, YE Qingsong, DANG Jiangtao, LEI Xiaoyi, ZHANG Yunyao, LIAO Chenguang, ZHAO Shenglei, ZHAO Wu. Simulation Study on In04Ga06N/GaN Heterojunction IMPATT Diode[J]. Microelectronics, 2021, 51(6): 923
Category:
Received: Mar. 26, 2021
Accepted: --
Published Online: Feb. 14, 2022
The Author Email: