Opto-Electronic Engineering, Volume. 48, Issue 1, 200112(2021)

Crack detection based on multi-scale Faster RCNN with attention

Chen Haiyong1、*, Zhao Peng1, and Yan Haowei2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(18)

    [1] [1] Anwar S A, Abdullah M Z. Micro-crack detection of multicrystalline solar cells featuring shape analysis and support vector machines[C]//Proceedings of 2012 IEEE International Conference on Control System, Computing and Engineering, 2012: 143?148.

    [2] [2] Su B Y, Chen H Y, Zhu Y F, et al. Classification of manufacturing defects in multicrystalline solar cells with novel feature descriptor[ J]. IEEE Trans Instrum Meas, 2019, 68(12): 4675?4688.

    [3] [3] Luo Q W, Sun Y C, Li P C, et al. Generalized completed local binary patterns for time-efficient steel surface defect classification[ J]. IEEE Trans Instrum Meas, 2019, 68(3): 667?679.

    [4] [4] Tsai D M, Chang C C, Chao S M. Micro-crack inspection in heterogeneously textured solar wafers using anisotropic diffusion[ J]. Image Vis Comput, 2010, 28(3): 491?501.

    [5] [5] Cha Y J, Choi W, Büyük?ztürk O. Deep learning‐based crack damage detection using convolutional neural networks[J]. Comput Aided Civ Inf Eng, 2017, 32(5): 361?378.

    [6] [6] Lin H, Li B, Wang X G, et al. Automated defect inspection of LED chip using deep convolutional neural network[J]. J Intell Manuf, 2019, 30(6): 2525?2534.

    [7] [7] Duan K W, Bai S, Xie L X, et al. Centernet: keypoint triplets for object detection[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision, 2019: 6568?6577.

    [8] [8] Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]//Proceedings of 2017 IEEE International Conference on Computer Vision, 2017: 2999?3007.

    [9] [9] Girshick R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision, 2015: 1440?1448.

    [10] [10] Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[ C]//Proceedings of the 28th International Conference on Neural Information Processing Systems, 2015: 91?99.

    [11] [11] Cha Y J, Choi W, Suh G, et al. Autonomous structural visual inspection using region‐based deep learning for detecting multiple damage types[J]. Comput Aided Civ Inf Eng, 2018, 33(9): 731?747.

    [12] [12] Gao L, Chen N N, Fan Y. Vehicle detection based on fusing multi-scale context convolution features[J]. Opto-Electron Eng, 2019, 46(4): 180331.

    [14] [14] Corbetta M, Shulman G L. Control of goal-directed and stimulus- driven attention in the brain[J]. Nat Rev Neurosci, 2002, 3(3): 201?215.

    [15] [15] Fraz?o M, Silva J A, Lobato K, et al. Electroluminescence of silicon solar cells using a consumer grade digital camera[J]. Measurement, 2017, 99: 7?12.

    [16] [16] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[ C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 7132?7141.

    [17] [17] Everingham M, Van Gool L, Williams C K I, et al. The PASCAL visual object classes (VOC) challenge[J]. Int J Comput Vis, 2010, 88(2): 303?338.

    [18] [18] Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3?19.

    Tools

    Get Citation

    Copy Citation Text

    Chen Haiyong, Zhao Peng, Yan Haowei. Crack detection based on multi-scale Faster RCNN with attention[J]. Opto-Electronic Engineering, 2021, 48(1): 200112

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Apr. 2, 2020

    Accepted: --

    Published Online: Sep. 2, 2021

    The Author Email: Haiyong Chen (haiyong.chen@hebut.edu.cn)

    DOI:10.12086/oee.2021.200112

    Topics