Journal of Synthetic Crystals, Volume. 54, Issue 7, 1175(2025)
Research Progress of Thermally Activated Delayed Fluorescent Scintillators
[1] DERENZO S E, WEBER M J, BOURRET-COURCHESNE E et al. The quest for the ideal inorganic scintillator. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 505, 111-117(2003).
[2] VAN EIJK C W E. Inorganic scintillators in medical imaging. Physics in Medicine and Biology, 47, R85-106(2002).
[3] UOYAMA H, GOUSHI K, SHIZU K et al. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 492, 234-238(2012).
[4] HIRATA S, SAKAI Y M, MASUI K et al. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence. Nature Materials, 14, 330-336(2015).
[5] KAJI H, SUZUKI H, FUKUSHIMA T et al. Purely organic electroluminescent material realizing 100% conversion from electricity to light. Nature Communications, 6, 8476(2015).
[6] YANG Z Y, MAO Z, XIE Z L et al. Recent advances in organic thermally activated delayed fluorescence materials. Chemical Society Reviews, 46, 915-1016(2017).
[7] YOUN LEE S, YASUDA T, NOMURA H et al. High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor-acceptor hybrid molecules. Applied Physics Letters, 101(2012).
[8] TANG Y M, DENG M X, ZHOU Z Z et al. Recent advances in lead-free Cs2ZrCl6 metal halide perovskites and their derivatives: from fundamentals to advanced applications. Coordination Chemistry Reviews, 499, 215490(2024).
[9] MA W B, SU Y R, ZHANG Q S et al. Thermally activated delayed fluorescence (TADF) organic molecules for efficient X-ray scintillation and imaging. Nature Materials, 21, 210-216(2022).
[10] DONG M Y, WANG Z Y, LIN Z Y et al. Temperature-adaptive organic scintillators for X-ray radiography. Journal of the American Chemical Society, 147, 4069-4078(2025).
[11] HARIHARAN M, KAMAT P. Tuning excited-state energy transfer for light energy conversion: a virtual issue. ACS Energy Letters, 7, 2114-2117(2022).
[12] HAN S Y, DENG R R, GU Q F et al. Lanthanide-doped inorganic nanoparticles turn molecular triplet excitons bright. Nature, 587, 594-599(2020).
[13] MAEDA D, SHIMAKOSHI H et al. Syntheses and photophysical behavior of porphyrin isomer Sn(Ⅳ) complexes. Inorganic Chemistry, 48, 9853-9860(2009).
[14] LIUS P, CHENJ S et al. Efficient thermally activated delayed fluorescence from all-inorganic cesium zirconium halide perovskite nanocrystals. Angewandte Chemie International Edition, 59, 21925-21929(2020).
[15] WANG J X, GUTIÉRREZ-ARZALUZ L, WANG X J et al. Heavy-atom engineering of thermally activated delayed fluorophores for high-performance X-ray imaging scintillators. Nature Photonics, 16, 869-875(2022).
[16] WANG J X, WANG X J, YIN J et al. Perovskite-nanosheet sensitizer for highly efficient organic X-ray imaging scintillator. Acs Energy Letters, 7, 10-16(2022).
[17] ZHANG N, QU L, DAI S H et al. Intramolecular charge transfer enables highly-efficient X-ray luminescence in cluster scintillators. Nature Communications, 14, 2901(2023).
[18] LIU X M, JIANG Y Y, LI F Y et al. Thermally activated delayed fluorescent scintillators based on mononuclear copper(I) halide complexes for high-resolution X-ray imaging. Advanced Optical Materials, 11, 2202169(2023).
[19] ZHANG F, ZHOU Y C, CHEN Z P et al. Thermally activated delayed fluorescence zirconium-based perovskites for large-area and ultraflexible X-ray scintillator screens. Advanced Materials, 34, 2204801(2022).
[20] LIN Q, WANG Z Y, WEI Y C et al. Thermally activated delayed fluorescence from perovskite-derivative CsAgCl2 nanocrystals for high-resolution X-ray imaging. Advanced Optical Materials, 11, 2202976(2023).
[21] YUAN S Q, ZHANG G Z, CHEN F H et al. Thermally activated delayed fluorescent Ag(I) complexes for highly efficient scintillation and high-resolution X-ray imaging. Advanced Functional Materials, 34, 2400436(2024).
[22] WANG W F, XIE M J, WANG P K et al. Thermally activated delayed fluorescence (TADF)-active coinage-metal sulfide clusters for high-resolution X-ray imaging. Angewandte Chemie International Edition, 63(2024).
[23] TANG Y M, PU G Q, WANG M C et al. Brightening dark excitons in inorganic halide perovskites by local symmetry breaking. Materials Today Chemistry, 41, 102307(2024).
[24] ZHANG Q S, LI B, HUANG S P et al. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nature Photonics, 8, 326-332(2014).
[25] SEINO Y, INOMATA S, SASABE H et al. High-performance green OLEDs using thermally activated delayed fluorescence with a power efficiency of over 100 lm·W-1. Advanced Materials, 28, 2638-2643(2016).
[26] JEON S O, LEE K H, KIM J S et al. High-efficiency, long-lifetime deep-blue organic light-emitting diodes. Nature Photonics, 15, 208-215(2021).
[27] WANG X, SHI H F, MA H L et al. Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence. Nature Photonics, 15, 187-192(2021).
[28] TANG L L, ZAN J, PENG H et al. X-ray excited ultralong room-temperature phosphorescence for organic afterglow scintillators. Chemical Communications, 56, 13559-13562(2020).
[29] DONG C M, WANG X, GONG W Q et al. Influence of isomerism on radioluminescence of purely organic phosphorescence scintillators. Angewandte Chemie International Edition, 60, 27195-27200(2021).
[30] CHEN Q S, WU J, OU X Y et al. All-inorganic perovskite nanocrystal scintillators. Nature, 561, 88-93(2018).
[31] MADAYANAD S S, HALL D, BELJONNE D et al. Multiresonant thermally activated delayed fluorescence emitters based on heteroatom-doped nanographenes: recent advances and prospects for organic light-emitting diodes. Advanced Functional Materials, 30, 1908677(2020).
[32] CHEN H M, LIN M, ZHU Y N et al. Halogen-bonding boosting the high performance X-ray imaging of organic scintillators. Small, 20, 2307277(2024).
[33] WANG J X, YIN J, GUTIÉRREZ-ARZALUZ L et al. Singlet fission-based high-resolution X-ray imaging scintillation screens. Advanced Science, 10, 2300406(2023).
[34] ZHU H, CHEN L Y, SUN B et al. Applications of macrocycle-based solid-state host-guest chemistry. Nature Reviews Chemistry, 7, 768-782(2023).
[35] WU J R, WU G X, LI D X et al. Macrocycle-based crystalline supramolecular assemblies built with intermolecular charge-transfer interactions. Angewandte Chemie International Edition, 62(2023).
[36] MA X K, LIU Y. Supramolecular purely organic room-temperature phosphorescence. Accounts of Chemical Research, 54, 3403-3414(2021).
[37] WU G X, YANG Y W. Macrocycle-based fluorochromic systems. Cell Reports Physical Science, 5, 101873(2024).
[38] ZHOU H Y, ZHANG D W, LI M et al. A calix [3] acridan-based host-guest cocrystal exhibiting efficient thermally activated delayed fluorescence. Angewandte Chemie International Edition, 61(2022).
[39] SUN Y H, JIANG L N, LIU L J et al. Two calix [3] phenothiazine-based amorphous pure organic room-temperature phosphorescent supramolecules mediated by guest. Advanced Optical Materials, 11, 2300326(2023).
[40] PEREGO J, VILLA I, PEDRINI A et al. Composite fast scintillators based on high-Z fluorescent metal-organic framework nanocrystals. Nature Photonics, 15, 393-400(2021).
[41] ZHANG G Z, CHEN F H, DI Y M et al. Guest-induced thermally activated delayed fluorescence organic supramolcular macrocycle scintillators for high-resolution X-ray imaging. Advanced Functional Materials, 34, 2404123(2024).
[42] WANG J X, GUTIÉRREZ-ARZALUZ L, WANG X J et al. Nearly 100% energy transfer at the interface of metal-organic frameworks for X-ray imaging scintillators. Matter, 5, 253-265(2022).
[43] WANG J X, DUTTA I, YIN J et al. Triplet-triplet energy-transfer-based transparent X-ray imaging scintillators. Matter, 6, 217-225(2023).
[44] ALOMAR S A, WANG J X et al. Enhancing the sensitivity and spatial imaging resolution of a hybrid X-ray imaging screen via energy transfer at the ZnS (Ag) and a thermally activated delayed fluorescence interface. ACS Applied Materials & Interfaces, 16, 70973-70979(2024).
[45] HOFBECK T, MONKOWIUS U, YERSIN H. Highly efficient luminescence of Cu(I) compounds: thermally activated delayed fluorescence combined with short-lived phosphorescence. Journal of the American Chemical Society, 137, 399-404(2015).
[46] BLASKIE M W, MCMILLIN D R. Photostudies of copper(I) systems. 6. Room-temperature emission and quenching studies of bis(2, 9-dimethyl-1, 10-phenanthroline)copper(I). Inorganic Chemistry, 19, 3519-3522(1980).
[47] GOODWIN K V, MCMILLIN D R. Anion-induced quenching of excited bis(2, 9-dimethyl-1, 10-phenanthroline)copper(1+). Inorganic Chemistry, 26, 875-877(1987).
[48] WALLESCH M, VOLZ D, ZINK D M et al. Bright coppertunities: multinuclear CuI complexes with N-P ligands and their applications. Chemistry-A European Journal, 20, 6578-6590(2014).
[49] TSUGE K, CHISHINA Y, HASHIGUCHI H et al. Luminescent copper(I) complexes with halogenido-bridged dimeric core. Coordination Chemistry Reviews, 306, 636-651(2016).
[50] YUAN P, HE T Y, ZHOU Y et al. Hybrid thermally activated nanocluster fluorophores for X-ray scintillators. ACS Energy Letters, 8, 5088-5097(2023).
[51] PENG Q C, SI Y B, WANG Z Y et al. Thermally activated delayed fluorescence coinage metal cluster scintillator. ACS Central Science, 9, 1419-1426(2023).
[52] JIANG J X, ZHAO Y F, LI Z J et al. Copper(I) halide complex featuring blue thermally activated delayed fluorescence and aggregate induced emission for efficient X-ray scintillation and imaging. Angewandte Chemie, 137(2025).
[53] DOSEN M, KAWADA Y, SHIBATA S et al. Control of emissive excited states of silver(I) halogenido coordination polymers by a solid solution approach. Inorganic Chemistry, 58, 8419-8431(2019).
[54] WANG D H, ZHANG Y, WANG Y T et al. Silver(I) complexes of diphenylpyridines: crystal structures, luminescence studies, theoretical insights, and biological activities. ChemPlusChem, 82, 323-332(2017).
[55] OSAWA M, HASHIMOTO M, KAWATA I et al. Photoluminescence properties of TADF-emitting three-coordinate silver(I) halide complexes with diphosphine ligands: a comparison study with copper(I) complexes. Dalton Transactions, 46, 12446-12455(2017).
[56] KOBAYASHI A, KATO M. Stimuli-responsive luminescent copper(I) complexes for intelligent emissive devices free. Chemistry Letters, 46, 154-162(2017).
[57] CARIATI E, LUCENTI E, BOTTA C et al. Cu(I) hybrid inorganic-organic materials with intriguing stimuli responsive and optoelectronic properties. Coordination Chemistry Reviews, 306, 566-614(2016).
Get Citation
Copy Citation Text
Yue ZHANG, Jiawen XIAO. Research Progress of Thermally Activated Delayed Fluorescent Scintillators[J]. Journal of Synthetic Crystals, 2025, 54(7): 1175
Category:
Received: Apr. 15, 2025
Accepted: --
Published Online: Aug. 28, 2025
The Author Email: Jiawen XIAO (xiaojw@bjut.edu.cn)