Chinese Optics, Volume. 15, Issue 4, 703(2022)

Through-focus scanning optical microscopy measurement based on machine learning

Guan-nan LI1, Jun-kai SHI1、*, Xiao-mei CHEN1, Chao GAO1,2, Xing-jian JIANG1, Cheng-jun CUI1, Qiang ZHU1,2,3, Shu-chun HUO1, and Wei-hu ZHOU1,2
Author Affiliations
  • 1Institute of Microelectronics of the Chinese Academy of Sciences, Optoelectronic R & D Center, Beijing 100094, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3China Banknote Printing Technology Research Institute Co., LTD., Beijing 100070, China
  • show less
    References(25)

    [1] QIN L, XIE X Y, LI J L. Development status and future development trend of MEMS technology[J]. Modern Defense Technology, 45, 1-5,23(2017).

    [2] MU J L, GUO M X, LIU B, . Fabrication methods and applications of silicon micro/nanometer structures with high aspect ratio[J]. Semiconductor Technology, 38, 321-327(2013).

    [3] WU J J, LI Y. Three-dimensional coordinate measurement of microstructures based on Nano measuring machine[J]. Optics and Precision Engineering, 28, 2252-2259(2020).

    [4] ZHANG D ZH, HU G Q. Key technologies of micro-electromechanical system and its recent progress[J]. Piezoelectrics & Acoustooptics, 32, 513-520(2010).

    [5] OGURA T. A high contrast method of unstained biological samples under a thin carbon film by scanning electron microscopy[J]. Biochemical and Biophysical Research Communications, 377, 79-84(2008).

    [6] FENG B, WANG J H. The optical means used in measuring surface microtopography[J]. Metrology & Measurement Technique, 32, 4-6(2005).

    [7] SCHAPER A, RÖßLE M, FORMANEK H, et al. Complementary visualization of mitotic barley chromatin by field-emission scanning electron microscopy and scanning force microscopy[J]. Journal of Structural Biology, 129, 17-29(2000).

    [8] ATTOTA R, SILVER R, BARNES B M. Optical through-focus technique that differentiates small changes in line width, line height, and sidewall angle for CD, overlay, and defect metrology applications[J]. Proceedings of SPIE, 6922, 69220E(2008).

    [9] ATTOTA R. TSOM method for nanoelectronics dimensional metrology[J]. AIP Conference Proceedings, 1395, 57-63(2011).

    [10] ATTOTA R, DIXSON R G, VLADÁR A E. Through-focus scanning optical microscopy[J]. Proceedings of SPIE, 8036, 803610(2011).

    [11] VARTANIAN V, ATTOTA R, PARK H, et al. TSV reveal height and dimension metrology by the TSOM method[J]. Proceedings of SPIE, 8681, 86812F(2013).

    [12] ATTOTA R. Noise analysis for through-focus scanning optical microscopy[J]. Optics Letters, 41, 745-748(2016).

    [13] ATTOTA R K, KANG H, SCOTT K, et al. Nondestructive shape process monitoring of three-dimensional, high-aspect-ratio targets using through-focus scanning optical microscopy[J]. Measurement Science and Technology, 29, 125007(2018).

    [14] ATTOTA R. Through-focus or volumetric type of optical imaging methods: a review[J]. Journal of Biomedical Optics, 23, 070901(2018).

    [15] LEE J H, PARK J H, JEONG D, et al. Tip/tilt-compensated through-focus scanning optical microscopy[J]. Proceedings of SPIE, 10023, 100230P(2016).

    [16] QU Y F, HAO J L, PENG R J. Machine-learning models for analyzing TSOM images of nanostructures[J]. Optics Express, 27, 33978-33998(2019).

    [17] PENG R J, JIANG J, REN J J, et al. Statistical character analysis for through-focus scanning optical microscopy in double floating variables measurement applications[J]. Optics and Lasers in Engineering, 141, 106560(2021).

    [18] [18] GE D B, YAN Y B. FiniteDifference TimeDomain Method f Electromagic Waves[M]. Xi’an: Xidian University Press, 2002. (in Chinese)

    [19] [19] DALAL N, TRIGGS B. Histograms of iented gradients f human detection[C]. 2005 IEEE Computer Society Conference on Computer Vision Pattern Recognition, IEEE, 2005: 886893.

    [20] ZHANG R Y, JIANG X J, AN J SH, . Design of global-contextual detection model for optical remote sensing targets[J]. Chinese Optics, 13, 1302-1313(2020).

    [21] GENG Q T, ZHAO H Y, YU F H, . Vehicle type recognition algorithm based on improved HOG feature[J]. Chinese Optics, 11, 174-181(2018).

    [22] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 20, 273-297(1995).

    [23] YAN G H, ZHU Y SH. Parameters selection method for support vector machine regression[J]. Computer Engineering, 35, 218-220(2009).

    [24] YU L D, CHANG Y Q, ZHAO H N, . Method for improving positioning accuracy of robot based on support vector regression[J]. Optics and Precision Engineering, 28, 2646-2654(2020).

    [25] ZOU Y N, ZHANG ZH B, LI Q, . Crack detection and segmentation in CT images using Hessian matrix and support vector machine[J]. Optics and Precision Engineering, 29, 2517-2527(2021).

    CLP Journals

    [1] Yi-zhen ZHENG, Jian DAI, Tian ZHANG, Kun XU. Multimodal feature fusion based on heterogeneous optical neural networks[J]. Chinese Optics, 2023, 16(6): 1343

    Tools

    Get Citation

    Copy Citation Text

    Guan-nan LI, Jun-kai SHI, Xiao-mei CHEN, Chao GAO, Xing-jian JIANG, Cheng-jun CUI, Qiang ZHU, Shu-chun HUO, Wei-hu ZHOU. Through-focus scanning optical microscopy measurement based on machine learning[J]. Chinese Optics, 2022, 15(4): 703

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Original Article

    Received: Jan. 10, 2022

    Accepted: --

    Published Online: Sep. 6, 2022

    The Author Email:

    DOI:10.37188/CO.2022-0009

    Topics